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EasiEI: A Simulator to Flexibly Modeling Complex
Edge Computing Environments

Xiao Su , Jianpeng Qi , Jiahao Wang , Rui Wang , and Yuan Yao

Abstract—In edge computing scenarios, there is a need for
modeling dedicated features and heterogeneous devices func-
tions, as well as integrating multiple complex scenarios with
diverse objectives and frequent interactions. However, existing
platforms modeling for the whole device ignores the independence
between functional components resulting in limited scenario
support. We propose an open-source simulator named EasiEI.
EasiEI addresses the need for higher level feature replaceability
and independence in modeling complex edge scenarios through
independent functional component-level modeling and micro-
kernel architecture. This approach enables users to assemble
independent functional components in a plug-and-play manner
for heterogeneous devices or different application requirements.
EasiEI is fully compatible with all the existing built-in mod-
ules in NS3 (a powerful network discrete event simulator). To
verify the flexibility and extensibility of EasiEI, we implement
several centralized and decentralized computing paradigms cases
in a step-by-step way. These cases restore and simulate the
performance state of various real devices in real time, meeting
the requirements for verifying the edge computing ideas such
as task scheduling in a distributed manner. Results show that
the simulations have well reflected the characteristics of the real
world and can construct complex environment flexibly.

Index Terms—Complex environment, edge computing,
microkernel architecture, modeling and simulation, resource
management.

I. INTRODUCTION

EDGE computing refers to performing various functions
at the edge of network and focuses more toward the

thing side [1] which are devices with functional components,
such as sensing, communicating, data collecting, managing,
and decision making [2].

Recent IoT growth projections suggest that by the year
2030 the number of connected on this planet will reach
approximately 30 billion [3]. With the increasing types of
device functions, manifestations of resources, and the amount
of resources, managing them is becoming more and more
complex and facing significant challenges [2]. It also com-
plicated the strategies in maintaining the system reliability
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and performance, no matter in distributed, centralized, or
single-machine scenarios.

A notable challenge under those complex characteristics is
that prototype and idea validation are not always feasible,
especially when the scenarios are diverse. Edge scenario faces
a challenge similar to the insect order paradox [4], where the
variety of edge devices and scenario needs is comparable to
the variety of insect species, making it difficult to effectively
represent them. However, existing edge computing simulation
platforms are limited to specific application scenarios during
development, resulting in tight coupling between device func-
tional components and models, making it impossible to replace
one feature with another that has similar functionality without
affecting the behavior of the overall system. We also make
a full list of popular edge computing open-source simulators
and frameworks on GitHub [5]. In reality, devices or entities
often have overlapping features, but the internal features of
the entities are independent of each other. When manufactur-
ers produce new edge devices, they often adjust the feature
based on existing chips and reproduce new devices to adapt
to different scenarios.

One of the main challenges introduced by the reality is
the lack of feature independence and isolation. Modeling
at the device level as the finest granularity cannot achieve
the above-mentioned feature independence and replaceability,
which leads to highly coupled functional components, limited
scenario support, and difficulty in extending simulators.

“A simulation model should always be developed for a par-
ticular set of objectives. In fact, a model that is valid for one
objective may not be for another,” Law [6] says. To make the
“objective” more general and to improve the scalability and
precision of edge computing simulator, in complex edge sce-
narios, we design and implement an open-source simulator
EasiEI (https://gitlab.com/Mirrola/ns-3-dev), a simulator for
complex edge scenarios that focuses on resource management
and utilization. In EasiEI, different functional components
can be combined flexibly to meet different requirements. The
major contribution of our work is listed as follows.

1) In order to conform to the independence of functional
components, improve the scalability of the underlying
components, and reduce the time cost of development.
We crack the simulation granularity from the device type
level to the function level. To do that, after examining
various scenarios and cluster trace data sets, including
Google, Alibaba, and others, we extract four essen-
tial functional components from the multifarious and
multifunctional edge and cloud devices, including Task
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Generator, Task Receiver, Task Orchestrator, and Task
Sender.

2) To better address the challenges in edge computing
scenarios, we propose a microkernel architecture that
enhances the independence and replaceability of compo-
nents in complex edge scenario. This architecture allows
for flexible feature combinations through interchange-
able and pluggable operations, which can effectively
simulate heterogeneous devices and complex scenar-
ios and conduct extensive experiments and scenarios to
show that EasiEI is easy to use.

The remainder of this article is organized as follows. We first
discuss the background and then introduce the related work
and motivation in Section II. We then introduce the design
and implementation and analyze the architecture of EasiEI in
Section III. In Section IV, we implement three cases to prove
the flexibility and extensibility of EasiEI. Section V discusses
the conclusion and several notable future directions.

II. BACKGROUND AND MOTIVATION

A. Requirements When Designing Simulator

Two aspects reflect the needs of complex scenarios in
edge computing systems: 1) simple scenarios require modeling
dedicated features (we use feature and function interchange-
ably hereafter) and heterogeneous devices and 2) complex
scenarios consist of several different simple scenarios embed-
ded with diverse objectives metrics and frequent interactions.
Using a smart city as a case study, it comprises a multitude
of simple interconnected scenarios, including but not lim-
ited to smart traffic management, intelligent lighting systems,
efficient waste management, and advanced public safety mea-
sures. Each of these scenarios possesses unique objectives
and performance metrics, necessitating frequent interaction
amongst them. In order to effectively model such complex
scenarios, it is imperative to achieve a high degree of feature
independence and replaceability.

1) Feature Replaceability in Edge Simulation Platforms: In
practice, the features required in a simulation platform depend
on the specific objectives of a given study. Different edge
scenarios have unique feature requirements, resulting in an
infinite range of potential applications with different needs [7].
For instance, fog computing [8], mobile-edge computing [9],
and edge cloud [10] have distinct architectures and resource
management goals, which necessitate fine-grained modeling
of functions, such as task offloading [11] and energy con-
sumption monitoring [12] within the framework. Meanwhile,
each specific application in a scenario has unique performance
metrics, including Quality of Service (QoS) [13], energy con-
sumption [14], reliability [15], and system throughput [16].
Due to the wide range of scenarios involved in edge comput-
ing, it is impossible to fully cover the evolving requirements
after the platform is built, and also difficult to meet all exist-
ing or future requirements. To achieve dynamic scalability and
diversity in edge computing scenarios, it is crucial to consider
the various features of each scenario and ensure the replace-
ability of their functions. The ability to replace features is

essential for simulation platforms to quickly switch between
different verification scenarios.

2) Feature Independence in Edge Simulation Platforms: In
edge computing, each edge device typically has independent
functionality, and the level of feature isolation plays a critical
role in determining the visibility of feature integrity to other
features and devices. A higher level of feature isolation allows
for more flexible and scalable modeling of edge computing
systems. According to Law [17], a system’s state is defined
as a collection of variables, including features and entities,
that are necessary to describe the system at a particular time.
In such systems, the features of each edge node are usually
independent of each other. For example, one feature of a node
might be responsible for data acquisition, while another fea-
ture might be responsible for data processing or storage. This
means that each feature can be modeled and simulated inde-
pendently without affecting the behavior of other devices or
features in the system.

3) Need for Low-Coupling and Feature-Independent
Simulation Platform: Simulating edge computing scenarios
using existing simulators can lead to highly coupled scenarios
that are difficult to reconfigure or dissolve. To accurately
model complex real-world scenarios in edge computing, it is
essential to recognize the importance of feature independence
and replaceability in simulation platforms.

The resources and functional features in existing simulators
are often confined within device models, leading to inflexi-
ble resource representation and limited adaptability to diverse
resources and scheduling requirements in complex scenarios.
The lack of feature replaceability and independence can cause
inflexibility of the simulation platform, requiring a redesign
and implementation of the entire system for any change. This
constraint limits the platform’s scalability and reusability, mak-
ing it challenging to add new features or replace existing ones.
Moreover, high coupling between features can cause changes
in one feature to affect the behavior of other features, resulting
in unpredictable outcomes.

B. Related Edge Computing Simulators

Edge computing simulation platforms are generally
built on three frameworks: 1) computing-based simulators;
2) networking-based simulators; and 3) greenfield simulator
(refers to a new project that has no existing infrastructure or
legacy code to utilize and needs to be built from scratch).
However, the computing resources and functional component
modeling and organization of most platforms are insuffi-
cient to support the simulation of complex scenarios in cloud
computing or edge computing.

1) Computing-Based Simulators: CloudSim [18] is capable
of modeling and simulating heterogeneous devices in large-
scale cloud computing infrastructures, including data centers,
service agents, scheduling, and allocation policies. It supports
independent virtualized resource modeling and organization
methods and can establish and manage multiple independent
and collaborative virtualized resource scheduling services on
data center nodes.
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TABLE I
RELATED SIMULATORS

iFogSim [19] inherits the low-coupling virtualization com-
putational design of CloudSim in modeling edge computing
devices and adds instances of fog computing devices, along
with a collaborative scheduling framework. Although it can
simulate heterogeneous devices, it lacks a modular feature
combination architecture, making it difficult to flexibly replace
features in a single device, and the device model is too large to
be developed, which cannot meet the needs of complex edge
computing scenarios.

EdgeCloudSim [20] inherits the resource virtualization of
CloudSim and builds an edge computing scheduling architec-
ture in the cloud–edge–end. EdgeCloudSim adopts a modular
design for load generation features, But there are too many
manual controls for access between devices, making feature
replacement difficult, which is not conducive to the expansion
and migration of distributed scenarios.

PureEdgeSim [28] can simulate heterogeneous devices and
has functionally independent components but adopts a device-
as-component approach, resulting in each device having only a
single function and lacking modular design. Although devices
are heterogeneous, their functions are too singular to support
complex scenario simulations.

2) Networking-Based Simulators: NS3 [21], OMNeT++
[22], and Mininet [23] are commonly used network simulation
and modeling tools that provide rich network protocols and
components for simulating different network scenarios. NS3
provides basic network protocols and components, includ-
ing LTE, named data networking (NDN), wireless sensor
networks, 5G networks, WiFi, WiMax, TCP/IP, and more.
OMNeT++ provides support for vehicular communication,
wireless network simulation frameworks, and mobile ad hoc
networks. Mininet simulates network interactions by creat-
ing software-defined network (SDN) element nodes, including
hosts, switches, controllers, and links.

FogNetSim++ [24], based on the data model of
OMNeT++, models fog computing networks and encapsu-
lates the simulation of protocols such as MQTT. It provides
network application layer receive/send functionality replace-
ability but lacks physical characteristic modeling of computing
power and heterogeneous devices. Compared to OMNeT++,
NS3 adopts a Linux-like architecture design, with its internal
interface (network to device driver) and application pro-
gramming interface (socket) well mapping the way modern
computers are built. It has network application layer proto-
col replaceability but lacks the modeling of computing ability,
making it unable to simulate edge computing scenarios. ns-
3-DCE [25] provides the functionality of executing entities

of network protocols or applications in both user space and
kernel space in NS3. It adds basic edge computing components
for modeling, and the basic components can be combined and
cooperate but lack replaceability.

MiniNet is a process-based lightweight virtual machine
simulation platform that can create SDNs on a single phys-
ical device. MiniNet simulates network elements by creating
network interactions between hosts, switches, controllers, and
links. MaxiNet [26] expands the scene based on MiniNet
and can interconnect multiple MiniNet scenes. Both have
independent and replaceable scenes but lack replaceability at
the device function level due to its coarse granularity, mak-
ing it difficult to customize scenes for dynamically changing
scenario requirements.

FogBed [27] combines Containernet [29] and MaxiNet,
allowing users to use Docker containers as hosts and cre-
ate virtual instances to simulate resource configurations. This
approach enhances MaxiNet’s fine-grained replaceability from
scene level to edge device level, and independent modeling
of computational resources. However, due to docker’s depen-
dency on the underlying operating system, it is not possible
to modularly replace device functionalities and computational
resources. Additionally, the simulation is constrained by the
limited resources of the host machine and cannot emulate
large-scale scenarios.

3) Greenfield Simulation Platform: SimEdgeIntel [30] is a
platform that focuses on the mobile features, edge caching,
and switching strategies in edge computing. The platform has
interchangeable algorithms for the aforementioned function-
alities, which allow users to validate different strategies for
their scenarios. However, lacks modeling for network protocal
stack and computing resources.

RECAP [31] is a platform that considers the character-
istics of complex edge scenarios and designs architectures
for resource utilization scenarios. However, the modeling
precision of the platform is limited to the device level, and it
lacks independent functionality and interchangeability, making
it difficult to expand scenarios.

While edge computing simulation platforms can take advan-
tage of the computing modeling and scheduling architecture of
cloud computing platforms, cloud computing mainly focuses
on centralized resource management under the assumption of
sufficient network resources. In cloud computing modeling,
computing resources are finely modeled, whereas network
resources are only modeled at the physical layer with param-
eters such as bandwidth and the number of links, without
modeling the multilayer communication protocols.
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Fig. 1. EasiEI architecture.

Computing-based platforms possess computing modeling
and scheduling frameworks but lack precise network modeling.
Networking-based platforms have high-precision network
modeling of multilayer protocols but lack scheduling frame-
works. Greenfield simulators have lower modeling accuracy
in both computing and network aspects. However, due to their
small platform size, they have the advantage of facilitating
rapid process validation.

Based on the literature review, it is evident that many exist-
ing simulators used in edge computing scenarios suffer from
high coupling and low flexibility due to the lack of feature
replaceability and independence. Therefore, it is crucial to
develop a simulation platform that provides a higher level of
feature isolation to support complex real-world scenarios.

III. EASIEI DESIGN AND IMPLEMENTATION

A. EasiEI Architecture

EasiEI is developed on top of the NS3 simulator
(core engine), which provides real-time event scheduling,
C++/Python runtime environment, networking, and logging
components. Furthermore, based on the built-in modules of
NS3 and the feature replaceability of the EasiEI architec-
ture, various functional components related to NS3’s features,
such as energy consumption and mobility, can be also flexibly
recombined.

EasiEI adheres to the Single Responsibility Principle by
dividing edge devices into independent functional components.
Four essential functional components, namely, Task Generator,
Task Receiver, Task Orchestrator, and Task Sender, have been
extracted from the diverse set of edge and cloud device func-
tionalities. Each component is responsible for executing its
own tasks without interfering with other components. Fig. 1
highlights various types of components that are triggered by
different tasks to initiate their respective processes.

The task-driven architecture, based on feature-level
modeling, caters to complex edge computing scenarios by sat-
isfying the requirements of feature independence and replace-
ability. It allows for flexible instantiation and combination of
features to build complex scenarios, transcending the con-
straints of individual simple scenarios, conforming to the
Open-Closed Principle. As a result, it can extend its func-
tionality or adapt to different scenarios by adding or replacing
functional components without modifying the existing kernel
code. Furthermore, the platform adheres to the Dependency
Inversion Principle and defines a unified abstract interface
for various types of functional components, allowing high-
level modules (device-level functions) to access different
functional components without understanding their underlying
implementation details.

The microkernel-based EasiEI architecture exhibits several
significant advantages over traditional architectures. First, its
microkernel only needs to maintain the task table, resulting in
a much simpler and more scalable architecture. This allows for
the insertion or removal of functional components as needed to
realize heterogeneous device simulation, significantly reducing
complexity. Second, the architecture’s scalability is enhanced
by its plug-in-based design, which enables users to customize
new functional components and add existing equipment mod-
els. Third, different types of task requirements signify diverse
edge scenarios, and the task-driven microkernel architecture
enables scene expansion and migration through the addition
of new types of tasks or adjustments to existing tasks while
allowing different types of tasks to coexist in the kernel
simultaneously. This greatly enhances the platform’s flexibil-
ity compared to traditional architectures. Users can leverage
edge computing-oriented engineering principles, such as [32],
to partition functional components based on specific scenario
requirements. This approach enables a more efficient and tai-
lored implementation of edge computing solutions, ultimately
enhancing overall system performance.

B. Fine-Grained Resource Model Enables Functional
Components Higher Accuracy

Task modeling is an essential component of the architec-
ture kernel, and the definition of features is largely dependent
on the modeling of resources and tasks. Different types of
tasks can reflect diverse scenario requirements, which can
impact the definition and modeling of feature components.
Modeling tasks can assist the platform in defining scenar-
ios. Furthermore, the level of resource modeling represents the
refinement degree of feature components. Therefore, modeling
tasks and resources can ensure the scalability and refinement
of features in scenarios.

1) Task Representation: The task entity information is
shown in Fig. 2, including time information, execution
information, location information, and maintenance entities.
The task requests virtualized resources modeled in Resource
Units as shown in Fig. 3 and task’s execution process is
simulated by sleeping the Task Orchestrator of the current
device for an equivalent duration as the task’s execution
time. EasiEI conducts two distinct task execution simulations
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Fig. 2. Task information.

using task time information and task execution information,
respectively.

In the first scenario, EasiEI leverages time information,
which encompasses the generation time, maximum waiting
time, and completion time of tasks. If the data set provides
the complete execution process of a task, task execution can
be simulated by configuring the generation time and comple-
tion time accordingly. If the task’s execution time exceeds the
maximum waiting time, the task is considered to have failed.

In the second scenario, EasiEI utilizes task execution
information, which includes computational resource require-
ments such as resource units, task priority, and the current state
of the task. In scenarios that necessitate dynamic alignment
between task workloads and device performance, users are
responsible for conducting their own performance modeling.
The resulting task load from the modeling process is desig-
nated as the computility demand, while the device performance
is defined as the Resource Unit. The runtime for task execu-
tion on different computational devices is determined by the
quotient obtained by dividing these two values.

Both approaches can coexist within the same scenario, with
the time information approach being given higher priority.
Furthermore, in the above two particular scenarios, the uti-
lization of task priority and task status can aid in validating
different scheduling algorithms. During the task execution pro-
cess, location information is maintained by a maintenance
entity. The source address identifies the device that gener-
ates the task, the current address identifies the intermediate
device where the task is currently located, and the destina-
tion address identifies the ultimate destination where the task
will be executed. The transition of a task from start to fin-
ish in a device involves the transition between multiple states
and operations. The workflow of tasks and platform will be
discussed in Section III-E.

2) Computation Resource Representation: Allocation and
recording of state changes of computing resources is done
through the compute resource class. The compute resource
class is responsible for modeling the amount of compute
resources in a computing device. For different types of com-
pute nodes in complex edge scenarios, EasiEI provides two
types of resource scaling: 1) resource unit and 2) resource
pools. A single resource unit can be assigned to each device.
By increasing the resource capacity of a resource unit, edge

Fig. 3. Resource combination.

Fig. 4. Task generator design.

devices with sufficient computational resources are modeled.
Meanwhile, multiple resource units can be combined into a
resource pool to be allocated to a single device, and the
resource ratio between different resource units can be adjusted
to simulate a cloud device with high computing resources.
Therefore, users can experimentally test the combination and
scheduling of resources based on different resource combina-
tion methods for different devices, such as edge computing
devices, edge servers, and cloud servers, as shown in Fig. 3.

C. Functional Components

As shown in Fig. 1, task generator can flexibly set
frequency, resource requirements, load, and category. Task
receiver provides the ability to define the task receiving
frequency, fault tolerance policies, and caching algorithm to
fit various receiving scenarios. Task orchestrator (or sched-
uler) defines different scheduling policies, resource allocation
policies, and offloading policies. Task sender allows users to
customize task sending frequency and destination selection
algorithm. EasiEI functional component design adopts a low-
coupling mode, which facilitates the expansion, migration, and
simulation of complex edge scenarios.

1) Task Generator: As the basic unit for requesting and
allocating resources, tasks are generated by the Task Generator
class, as shown in Fig. 4. Users can import real-world data sets
through the GetTaskInfo function, which includes information
about resource requirements, start time, end time, priority,
and destination, to generate task base data. Alternatively, spe-
cific distributions of task resources and time can be simulated
and imported as task information using ProbDistr. Then, the
Generate function is called to generate a task instance. The
task instance information is evaluated, and if the task’s desti-
nation is equal to the local machine ID, the task is saved in
Ptr〈LocalTable〉 and waits for the task scheduler to schedule it.
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Fig. 5. Receiver design.

Otherwise, it is saved in Ptr〈SendTable〉 and waits for the task
sender to forward and uninstall it.

2) Task Receiver: In a complex edge scenario, task offload-
ing, forwarding, and receiving policies change continuously
with many factors, including task arrival rate in the queue,
processing speed of the device, and transmission rate of the
link. These factors finally affect the queue latency of a task.

Application is responsible for implementing the encapsu-
lation of the communication protocol, as shown in Fig. 5.
The nodes in the network topology interact with each other
through the Application. Nodes are bound to Application and
ResourcePool by Aggregator, and Node has direct access to
the application and resource components installed in this node.
The task instance is then stored in Ptr〈ReceiveTable〉.

Therefore, FrequencyCtr and Synchronize are implemented
in Receiver, where Synchronize is responsible for control-
ling the frequency of synchronization between the local task
table Ptr〈LocalTable〉 and the receive cache Ptr〈ReceiveTable〉.
The frequency synchronization policy is bundled into a task
instance, which can not only synchronize the frequency
between local components but also serialize the synchro-
nization between network nodes. This method verifies data
consistency, cache misses, and other scenarios.

3) Task Orchestrator: Task Orchestrator class is respon-
sible for allocating computing resources based on task
requirements and scenario context, as shown in Fig. 6. It
schedules tasks based on the scheduling model defined by
users. In EasiEI, by default, task operations and resource
allocation are manipulated in a first-in–first-served (FIFS)
and round robin (RR) order which is implemented by
ChooseTask. For simultaneous arrival tasks, we use a non-
preemptive high-priority scheduling policy. When allocating
resources, Task Orchestrator traverses the resource unit in
the Ptr〈ResourcePool〉 by order. EasiEI also allows cus-
tom implementation of resource scheduling techniques by
ResourceAllocate to accommodate complex edge scenario
requirements [33].

4) Task Sender: Users can verify different types of load-
transfer policies by using the Task Sender class, as shown
in Fig. 7. By default, there are two ways to send tasks. The
first is centralized scheduling, which picks the task destina-
tion. When a unique destination device name is given in a
task, Task Sender determines the IP address of the unique
item by checking its local DNS and forwards the task to the
destination. The second is distributed scheduling, which picks

Fig. 6. Orchestrator design.

Fig. 7. Sender design.

the bound address to send the task. These two ways make
EasiEI highly scalable for various scenarios and allow users
to build diverse distributed/centralized scheduling frameworks
according to their needs.

D. Microkernel Architecture Makes EasiEI More Scalable
and Devices Easy to Communicate With

To reduce the coupling between functional components,
we assume there is no direct information transfer among the
components. Therefore, we introduce the kernel part of the
microkernel architecture, task status table (TST), as shown
in Fig. 1. The above four functional components accomplish
information exchange by performing CRUD (create, read,
update, and delete) operations on the TST in the device. The
kernel is relatively stable and will not be constantly modified
due to the expansion of scenario capabilities, and the plug-in
modules can be continuously extended. This kernel design can
efficiently shield the functional heterogeneity of the physical
device.

Fig. 8 shows the details of TST. In order to make the
scheduling simulation more realistic and to allow users to track
the state of the target task in real time during the simulation,
EasiEI provides the TST class to assist in multistate switch-
ing of tasks and to save multiple states of all tasks on the
current device. Tasks with different states are stored in dif-
ferent task state tables. TST maintains task instances in each
status using double circular linked list that are consumed by
functional components. EasiEI allows functional components
to control the state of an independently configurable number
of tasks. Life cycles of the tasks in TST are divided into the
following four phases: 1) submit: a task was submitted to TST
by task generator or received from network by task receiver;
2) pending: a task is queued waiting for a specific event to
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Fig. 8. Kernel: status table design.

occur; 3) running: a task was scheduled by task orchestrator;
and 4) dead: a task was canceled, de-scheduled, or competed
normally.

According to the capabilities and scenario requirements
of the four queues, each task queue can plug-in different
functional components.

1) Submit list needs to wait for the task generator and task
receiver to pass tasks. Under the influence of task gener-
ator’s task probability distribution, task receiver’s cache
strategy, and network status, submit list sorts the tasks
according to the time stamp of their arrival in the list.

2) Pending lists have many uses in task scheduling, espe-
cially in task interrupt handling and task synchroniza-
tion. Tasks must often wait for certain events to occur,
such as waiting for device to release resources, waiting
for time to pass a fixed interval, waiting for a parent
task to finish, waiting to offload to another edge device,
and so on. The pending list is preordered according to
different scheduling policies, and the task orchestrator
only needs to pick the first task in the pending list and
perform state transition and resource allocation when
scheduling.

3) The volume of the running list is affected by the com-
puting capacity and concurrency of the current edge
device.

4) The dead list is sorted by task end time, and the capacity
can be adjusted according to the platform’s log strategy.
Tasks processed by different device functions require
state transitions and list maintenance by the dominant
device function.

In addition, users can use a building block approach to
simulate functionally heterogeneous edge devices for different
combinations of functional components.

A Tiny Example: Consider a simple example of a laboratory
as shown in Fig. 9. The IoT devices in this scenario are tem-
perature and humidity sensors installed in the lab to monitor
the room temperature and humidity in real time and adjust the
air conditioner intelligently. However, these sensors may not be
embedded in the air conditioner, a classic way is using wireless
access to connect them with the control center. Some other
devices, such as an automatic door embedded a distance sensor
to intelligently open or close the door, may not require data

Fig. 9. Real topology of example.

Fig. 10. Abstract topology and EasiEI device model of example.

communication and therefore do not require networking. Due to
limited batteries, the IoT device needs to be integrated with an
energy module. Edge computing devices are smartphones and
computers, where computers are wired-connected and smart-
phones are wireless-connected. Smartphones also need to be
combined with mobility components. High-performance labs
are equipped with multiple servers to provide private cloud
computing resources, and the servers are wired to the network.
Given the limited computational capabilities of edge devices,
collaborative scenarios involving data sharing, task offload-
ing, and collaborative computing are observed among phones,
computers, and private clouds.

To simulate it, sensors, devices, and cloud servers need to
be modeled. For functionally heterogeneous devices, EasiEI’s
loosely coupled build form is shown in Fig. 10. The con-
struction of cloud–edge–end devices can be accomplished
by assembling functional components. Networked tempera-
ture and humidity sensors have at least three components: task
receiving, task sending, and task generation. Non-networked
sensors have only task generation and a simple task scheduling
component. For functionally complex edge computing devices
and server resources, four functional components are included:
1) task generation; 2) task acceptance; 3) task scheduling;
and 4) task sending. By virtue of the inherent independence
of the functional components, it is possible to dynamically
add or remove the combination of these components within
the device model, thereby achieving a dynamic simulation of
various device types.
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Fig. 11. Overall workflow of EasiEI platform.

Moreover, by inheriting and modifying the implementation
methods of these components, a wide range of cross-device
collaborative scenarios can be realized. Users have the ability
to modify the generator and sender of sensors to accom-
plish environmental monitoring logging to the cloud. Phones,
computers, and cloud systems possess the capability to sim-
ulate collaborative scenarios by making adjustments to the
orchestrator and sender components. Furthermore, the cloud
can leverage the Resource Unit to validate various resource
combinations and allocation strategies.

E. Workflow of Functional Components in EasiEI

To better illustrate the workflow of the platform as shown
in Fig. 11, the scenario setup and running process of EasiEI
is described as follows.

1) Read the network topology data and configuration
information, create the edge computing scenario network
topology, which consists of multiple nodes and links.
Then initialize the parameters of the five-layer network
protocol stack according to the network configuration
information.

2) Based on the complex scenario requirements, combine
independent functional components on each node of the
topology and encapsulate the nodes into heterogeneous
edge computing devices with functions, such as sensing,
storage, computation, and transmission.

3) Read the computing power configuration data of the het-
erogeneous edge devices in the topology and initialize
the computing power deployment of the edge devices.

4) Read the task information in the data set, generate tasks
on the edge devices, and drive the simulation running
process by task management and operation.

To facilitate a comprehensive understanding of task manage-
ment and operation in the simulation scenario, it is critical to
have a clear grasp of the workflow involved in task processing.
This workflow comprises several critical stages, such as task
generation, distribution, scheduling, and execution, and is fun-
damental to ensure the efficient and effective execution of tasks
in a distributed environment as depicted in Fig. 12. The colored
blocks in the diagram represent the task entity information
used during the state transition process as illustrated in Fig. 2.
During the task state transition process, the maintenance entity
responsible for task processing uses abbreviations of functional
component names to identify which component is responsible
for maintaining tasks and TSTs.

Tasks can be generated locally or received remotely and
transition from the unsubmit state to the pending state through

Fig. 12. Task lifecycle process diagram.

the submit operation. When generated locally, the device
reads the task time and execution information through the
task generator and creates the task entity. When received
remotely through the receiver, if the maximum waiting time
has been exceeded, the task will be discarded. Both generation
methods require an address judgment step. If the destina-
tion address matches the current device address, the task will
be saved to the main task chain in the TST on the current
device. Otherwise, the task will be forwarded to the destination
address.

Then, orchestrator can judge the task’s execution and time
information based on the scheduling algorithm. Tasks that
meet the scheduling algorithm will transition to the running
state through the orchestrate behavior. If local computing
resources are scarce or the waiting time for the task exceeds
the maximum, orchestrator will transition the task from the
pending state to the dead state through the fail operation.
Orchestrator completes task execution simulation by sleeping
and simulating the execution time difference between task end
and start time. When Orchestrator judges that the task has
executed for an equivalent simulated execution time, the task
transitions to the dead state through the accomplish operation.

For tasks that have not been able to complete the execu-
tion process normally and are in the dead state, the time and
execution information of the task can be extracted and reinput
to the generator through the resubmit operation to reconvert
the task to the pending state. Alternatively, after the generator
has finished generating, the task can be temporarily stored in
the auxiliary task table in the TST, sent to a remote node by
the sender through the send operation, and initialized to the
unsubmit state.

IV. CASE STUDIES

Computing paradigms in edge scenarios can be classified
into three categories: 1) centralized; 2) semi-decentralized or
semi-centralized; and 3) decentralized. The semi-decentralized
can actually be directly inherited from the centralized by
adding several domain coordinators, such as Cloudlet [34].
In this article, we implement the centralized and decentral-
ized paradigms. The experiment configuration for our platform
consists of Ubuntu 18.04 as the underlying operating system.
Additionally, it needs support for the native NS3 environment
and the Boost Serialization Library. We first provide a case
to verify the ground truth of EasiEI in Section IV-A, which
belongs to the centralized. Then, we further implement a semi-
decentralized scenario in Section IV-B. a similar concept can
refer to the Computing First Networking [35]. In Section IV-C,
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Fig. 13. Google scenario topology.

we also implement a Monte Carlo simulation coming from
the reliability analysis realm to prove the flexibility of EasiEI.
All subsequent experimental scenarios and functional com-
ponent operations follow the same workflow as described in
Section III-E.

A. Case Study One: Centralized Computation Resource
Scheduling in Dynamic Scenario

To verify the ground truth of EasiEI, we adopt Google
Cluster traces that consists of 12 500 physical machines con-
nected via a high-speed wired network [36]. We select the top
ten machines from the stable machine cluster with the most
valid information and no updates or deletions as the stable task
receivers. Like many cloud systems, Google cluster architec-
ture consists of a single scheduling host (device 0) and many
service nodes (SNs) as shown in Fig. 13. Each SN receives job
requests from scheduling host that contain meta-information
required for single-machine scheduling. In this experiment, a
scheduling strategy of FIFS, and high-priority response was
used for all SNs. Moreover, the transmission delay between
devices was set to 2 ms. The task arrival density within the
data set is depicted in Fig. 14, revealing a noticeable spike in
cluster requests around the 1500-second mark.

The task execution time was obtained by processing the
task state, and the local task execution time was obtained by
subtracting the termination timestamp from the running times-
tamp. The simulation process assumed that task execution time
was stable once resource requests were fulfilled. Tasks that
failed to receive scheduling within the timeout period or failed
due to insufficient resources upon receiving scheduling were
deemed failures and were discarded.

Based on the initialization information of the devices in the
data set, the ratios of the total CPU resource and memory
resource were set to 0.5 and 0.2493, respectively. These
resource quantities were normalized based on the device with
the maximum capacity in the data set, which was scaled to 1.0.
Task resource requests were represented as a binary tuple of
CPU and memory, and the density plot of resource requests is

Fig. 14. Arrival density of task.

Fig. 15. Task resource request.

depicted in Fig. 15. The majority of the requested tasks were
memory-intensive, requiring a significant amount of memory
resources during task execution.

Fig. 16 displays the resource changes during the simula-
tion process. At 2000 s, nodes 2, 6, 7, 8, and 9 had their
memory reduced to near zero. Additionally, there was often a
surplus of CPU resources while memory repeatedly reached
its lowest threshold during the simulation. When the memory
resource of the devices was increased to 0.5 while keeping the
CPU resource constant, the task failure statistics for the two
experiments are shown in Fig. 17. The graph records the total
number of task failures in each time zone during the simu-
lation, with a statistical interval of 250 s. Both experiments
reached the peak of failed tasks at 2000 s. However, when the
total memory resources of the devices were increased while
the CPU remained constant, the number of task failures at the
peak significantly decreased.

B. Case Study Two: Semi-Decentralized Service Provision in
Dynamic Scenario

Compared with the centralized cloud computing, the edge
computing scenario lacks stable resource support with high
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Fig. 16. Remaining computation resources of nodes.

Fig. 17. Task failure comparison under different memory limits.

computing power, which makes it difficult to realize a
global centralized scheduling scheme. The semi-decentralized
scheduling scheme divides the global area into multiple
domain, like edge cloud implemented in iFogSim [19]. Each
domain contains a coordinator that monitors the domes-
tic information, and the SN status is synchronized between
domains through the coordinators. From the perspective of
global information, it consists of multiple domains that are
scheduled through distributed scheduling. From the intrado-
main information point of view, the domains are controlled by
the coordinators through a centralized scheduling scheme. To
reflect the complexity of the scenario in complex edge scenar-
ios and the scalability of EasiEI for the simulation of multiple
scheduling frameworks, this experiment is performed for

Fig. 18. Network topology.

Fig. 19. EasiEI abstract devices.

the simulation comparison of semi-decentralized scheduling
frameworks.

Fig. 18 shows this scenario’s topology whose data is adopted
from the real-word ISP network, i.e., rocketfuel [37]. It
contains three types of nodes: 1) SN (green double-circle
nodes); 2) user (red nodes, service requesters); and 3) coor-
dinators (Coord, blue double-circle nodes). Each domain is
formed by combining a single Coord and multiple SN nodes.
Users’ requests follow the shortest path to access the services
maintained on SN.

We select nodes 8, 125, 147, and 164 from this topology
as Coord nodes and label them as CoordC. 12, 51, 78, 90,
93, 116, 196, 198, 216, and 226 are selected as SN nodes and
labeled as SCN in Fig. 18. In this simulation, all users access
the service ten times per minute, obeying Poisson distribu-
tion. And the time interval of the next visit obeys exponential
distribution. To benchmark performance, the network latency
between each pair of hosts is set to 2 ms and each host’s
bandwidth is 1.5 Gb/s. The task load is 8 Mb, and the default
execution is 5 ms. All peers start at the same time and run
for 100 simulated seconds. Max concurrency represents the
maximum number of concurrency that can be supported by
the node’s service capacity. Deadline threshold represents the
maximum waiting time for the task. A task fails if the total
delay from the time it is generated by the user to the time it
is scheduled by the SN exceeds the threshold.

EasiEI uses four functional components to form each of the
three types of nodes into three functional types of devices, as
shown in Fig. 19.
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Fig. 20. Task execution statistics.

By redefining the four functional components of these
three types of nodes, perception, and collaboration within the
scenarios can be achieved. In the experiment, Coord use a
latency threshold to shape the domain range, which means
users out of the “latency circle” can be judged to out-of-
service. First, SN nodes monitor and generate heartbeat data
in 325 ms intervals via task generator which obtain their own
available computing resource status and packetize them into
packets and send them by sender to the Coord in the domain
using UDP protocol. All Coord have decision capabilities.
After receiving heartbeat by receiver, the Coord node decodes
the information and calculates the transmission delay of the
packet to estimate the service delays. The Coord node then
saves this delay information in the sender’s sending table to
provide an indicator when users accessing the services. When
a task is received from a user via receiver, Coord looks up
the send table in sender and completes the distribution of the
task and load balancing of the network according to the link
bandwidth and computing resources of SN. When the SN node
receives a task forwarded by Coord through receiver, SN node
allocates computational resources for the task. The execution
statistics of the tasks are shown in Fig. 20.

To investigate the impact of different computation support,
perception frequency, and task time constraints on the number
of task successes and to assess the scalability of the distributed
framework, two sets of experiments were conducted separately.
The results of the first set of experiments, shown in Fig. 20,
demonstrate the fluctuation of task success with changes in
the maximum task waiting time under different concurrency

Fig. 21. Task success variation under different perception frequencies.

degrees. Concurrency, as one of the bottlenecks of the schedul-
ing framework, has a significant impact on task scheduling and
response. Increasing the concurrency of the device can signif-
icantly improve the system’s service capability. However, the
number of task successes plateaus when the maximum task
wait time reaches 23 ms. As the longest waiting time increases,
the latency constraint on task response decreases, resulting in
computation resource contention in the service circle, which
in turn reduces the number of successes.

To investigate the effect of perceived frequency on service
response, a second set of experiments was conducted, and the
results are shown in Fig. 20. As the maximum waiting time
grows to 23 ms, the effect of perceived frequency on the num-
ber of task successes gradually decreases. The primary reason
for this is that the data freshness of the Coord node has a
more significant impact on service response when the service
constraint is more stringent. As the service constraint gradu-
ally relaxes as shown in Fig. 21, the scheduling system can
increase efficiency and reduce costs by reducing the sensing
frequency.

In conclusion, the results of our experiments show that
concurrency, latency, and data freshness are essential fac-
tors that significantly impact the success of task scheduling
and response in a distributed framework. Therefore, when
designing and implementing such a framework, it is crucial
to carefully consider these factors and adjust the deploy-
ment parameters accordingly. With the help of EasiEI, these
parameters can be fine-tuned to improve service quality while
reducing service costs, resulting in a more scalable and effi-
cient service delivery system. This research provides valuable
insights into the optimization of distributed frameworks, which
can be applied to a wide range of applications, including edge
computing, IoT, and cloud computing.

C. Case Study Three: Monte Carlo Support

In the edge scenario, in addition to the limited computing
resources, the communication resources are also changing in
real time, which leads to the high computing delay of the
services. In particular, each edge node is usually responsible
for more than one service and service provider, which means
that there are many factors causing the change of its available
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Fig. 22. Real topology.

Fig. 23. EasiEI abstract topology.

resources. Calculating service reliability given a precise model
in this scenario becomes vital. However, centralized methods
in this scenario are not flexible due to frequently synchronizing
of the massive edge nodes. Also, searching space becomes
tremendous due to the resource changing states.

According to [15], a broadly used technology to improve
the reliability of a collaborative service is service redundancy.
Fig. 22 gives the topology of the scenario, where each path
from IoT sources to the Cloud contains three sequential sub-
services or subtasks of a same service. The simplified topology
of one path based on the EasiEI architecture is shown in
Fig. 23. The dashed link indicates that the devices are con-
nected via a wireless network while the solid link indicates a
wired network. The setup of a chained task scheduling scenario
was achieved through modifications made to the orchestrator.

In this example, the sensor on the left generates task data
and sends three copies of the task to the three links connected
with it. Accept tuning as the task goes through the computa-
tion device required in the directed cycling graph. Otherwise,
continue to forward until the task ends. If the task is com-
pleted within the maximum time threshold, it is considered
successful; otherwise, it fails.

Algorithm 1 gives the flow of the Monte Carlo simulation
implemented in EasiEI.

To reflect the flexible network scenario simulation and
diverse heterogeneous device simulation. In this experiment,
bandwidth distribution sampling is adopted to represent the
variation of available bandwidth which in view of the dynamic
nature of network. In view of the dynamic nature of computing
resources, the probability distribution of availability is summa-
rized through historical data modeling. The network bandwidth
table and available computation resource table are shown in
Tables II and III.

Table II describes the probability distribution of bandwidth
available to each link in the current network. Table III shows
the probability distribution of computing resources available
to each computing device.

The reliability or success rate table for each round of
4000 tasks is shown in Table IV, where T is the given time

Algorithm 1 Monte Carlo Simulation
Require:

Initial Computation resource, Bandwidth distribution;
Input Task;

Ensure: Reliability;
1: t = ∑

lead time + trans time + computing time;
2: for k = 1 : 4000 do
3: Create TASK0 at the client’s (task generator at sensor)
4: Decide whether need transmission or computing accord-

ing to device category, computing resource and band-
width distribution (task receiver at edge devices or
transmission site);

5: Orchestrate task according to task requirement and com-
puting resources(task orchestrator at edge devices and
cloud);

6: Offload task according to DAG requirement (task sender
at edge devices);

7: ......
8: until finish the sequential task chain of a size three (task

orchestrator at cloud);
9: Recording time cost t in total (task orchestrator at

cloud);
10: if t ≤ Maximum time threshold then
11: Success+ = 1
12: else
13: Defeat+ = 1
14: end if
15: end for
16: Reliability = Success

Success+Defeat ;

TABLE II
BANDWIDTH CAPACITY PROBABILITY

TABLE III
AVAILABLE NODES CAPACITY PROBABILITY

threshold and C is the data transmission size. Results show
that simulation results are roughly equal to the theoretical
results.
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TABLE IV
EASIEI MONTE CARLO SIMULATION RESULTS

V. CONCLUSION AND FUTURE WORK

In edge computing scenarios, there are various complexity
factors, such as scenario metrics and coordination. In such
complex environments, simulation can efficiently evaluate
deployment strategies. However, current simulation platforms
mostly focus on modeling simple scenarios and still rely on
device-level modeling with high coupling among functions.
This fails to consider the need for functional independence
and replaceability in complex scenarios, making it difficult to
support complex edge scenario simulation.

To address these issues, we propose the EasiEI simulation
platform. EasiEI elevates the modeling granularity to the level
of device functionality and adopts a microkernel architecture
design that considers the independence and replaceability of
resources and functions. The platform can flexibly combine
different functional components to meet the simulation needs
of heterogeneous devices and enables functional replacement
through a plug-and-play approach. Furthermore, users can cus-
tomize new functional components and embed them into the
microkernel architecture to meet the requirements of complex
scenarios.

To better address the challenges of task real execution
and complex relationships between executable task entities
in complex edge computing scenarios, EasiEI will design a
framework for managing executable task entities and task
execution statuses. Leveraging the microkernel architecture
design at the current functional level, the framework will
seamlessly integrate with the existing platform, avoiding the
impact of reconstructing from a simulator to a mixed execution
architecture.
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