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R2: A Distributed Remote Function Execution
Mechanism With Built-In Metadata

Jianpeng Qi

Abstract—Named data networking (NDN) constructs a net-
work by names, providing a flexible and decentralized way
to manage resources within the edge computing continuum.
This paper aims to solve the question, “Given a function with
its parameters and metadata, how to select the executor in a
distributed manner and obtain the result in NDN?” To answer
it, we design R2 that involves the following stages. First, we design
a name structure including data, function names, and other
function parameters. Second, we develop a 2-phase mechanism,
where in the first phase, the function request from a client-first
reaches the data source and retrieves the metadata. Then the best
node is selected while the metadata responds to the client. In the
second phase, the chosen node directly retrieves the data, executes
the function, and provides the result to the client. Furthermore,
we propose a stop condition to intelligently reduce the processing
time of the first phase and provide a simple proof and range
analysis. Simulations confirm that R2 outperforms the current
solutions in terms of resource allocation, especially when the data
volume and the function complexity are high. In the experiments,
when the data size is 100 KiB and the function complexity is
O(n?), the speedup ratio is 4.61. To further evaluate R2, we also
implement a general intermediate data processing logic named
“Bolt” implemented on an app-level in ndnSIM. We believe that
R2 shall help the researchers and developers to verify their ideas
smoothly.

Index Terms— Edge computing, metadata, information-centric
networking, named-data networking, decentralized method
invocation.

I. INTRODUCTION

DC ESTIMATES that by 2025 41.6 billion devices will be

interconnected, and data volume will reach 79.4 zettabytes
(ZB) [1]. Current cloud computing architectures do not afford
such an overwhelming amount of devices and data due to high
latency, limited bandwidth, high carbon footprint, and poor
security [2]. Many traditional services that are processed in
the cloud but generated remotely [3] are thus maintained at a
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Fig. 1.

Ilustration of edge computing [6].

high cost, e.g., the communication and computation-intensive
tasks, such as image recognition and target tracking. Thus,
edge computing, an accelerator of cloud computing, affords
better computing resources for users and thus gains widespread
attention. Current edge computing features, i.e., ultra-low
latency, geographical distribution, unlimited bandwidth, high
privacy, and security, offset the lack of cloud computing
and employ it used in many realms [4]. Additionally to the
edge resources, as illustrated in Fig. 1, “edge computing
includes employing networked resources closer to the data
sources/sinks. Resources can be at the edge, in the cloud,
and everywhere in between a continuum” [2], [5], [6]. Hence,
edge computing affords task processing and data analysis
everywhere.

Edge resources, specifically the continuum, are usually
employed to execute tasks in a distributed manner to provide
a time-limited service. For example, developers may partition
the communication and computation-intensive deep learning
models, consecutively deploy them on the continuum, and
then execute them to obtain the results with a short delay [7].
Compared with purely cloud processing, continuum processing
has several benefits: low energy cost and low latency. However,
the latter advantages assume that the nodes/networks state
and the data sources details are known, even for a trivial
counting job, such as task scheduling, resource discovering,
and data retrieving. The most popular way of knowing and
managing these states and details is utilizing a central metadata
server that involves abstract data about essential attributes such
as location, size, and format. This strategy is used in many
applications like the “Metastore” or “NameNode” of Apache
Hadoop. By managing the metadata through the central node,
the developers or users can easily leverage their resources.
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Nevertheless, in an edge computing scenario, metadata
management is non-trivial, as developing such a central
server is costly. This is because enormous small data pieces,
chunks, and files, are scattered in geo-graphical distribution,
and gathering and managing them in a centralized manner
becomes infeasible, as the nodes within the continuum
are usually volatile, highly changeable, and even unreliable
[8], [9]. Electing a consensus node with high availability in
such a dynamic environment imposes high scheduling and
maintenance costs [10], prohibiting edge computing from
being affordable. Furthermore, cost estimation, monitoring the
remote nodes’ status, authentication, and service optimization
is challenging. Therefore, utilizing the edge resources in a
decentralized and native way instead of a consensus node
becomes critical.

Some typical applications like CDN and DNS accelerate the
network’s data access speed. Specifically, CDN caches offer
little in terms of general computational capabilities [11], while
DNS [12] introduces additional inevitable name resolution
delays [9]. Nevertheless, the current IP architecture suitable
for point-to-point communication is limited in distributed
networks [13].

Fortunately, Information-Centric Networking (ICN) and,
in particular, its prominent Named Data Networking (NDN)
instantiation [13] that constructs the network based on the data
name rather than IP provides a realistic solution. Specifically,
the work based on NDN uses the function/service name
as its routing rules to find the proper executor in a fully
distributed manner. This strategy affords to provide quickly
and efficiently several scalable and robust services, e.g.,
serverless computing, function as a service, and in-network
computing [14], [15], [16]. However, ICN/NDN tech-
nology 1is still at an early stage and requires more
investigation [17].

Many works that integrate the function or service name
and directly transmit the raw data to the executor may cause
a blocking problem. Thus, metadata should solve the latter
issue before accelerating the edge computing speed. Besides
the proper executor selection, retrieving metadata as the first
step presents several side benefits, such as checking the node’s
health or working status in the data forwarding path, affording
cost estimation by relatively small metadata to avoid network
congestion, and warming up the dependent environment of the
function/service.

Nevertheless, the following question arises, “is it feasible
to perform in-network processing in NDN according to the
metadata?”’. To answer this question, this paper investigates
leveraging resources within the continuum in a distributed
fashion to satisfy the function/service requirement in NDN.
The proposed design presents the following features: (1) Data
and metadata are distributively stored, with the preferred
location being the data producer. (2) The user publishes an
Interest containing a data name and a function with parameters
and only expects the function result (output of the function).
(3) The function can be executed along the continuum
from the user to the data generator. (4) Most importantly,
using metadata to select the best function execution node to
minimize the end-to-end delay.

Based on these features, we propose a 2-phase distributed
remote function execution mechanism utilizing metadata.
During the first phase, we select the best executor in the
forwarding path according to the data abstract, node status,
and network condition to minimize the total end-to-end delay.
Then, in the second phase, we use this executor as a “transit
station” to receive the large raw dataset, analyze it, and send
the short analyzed result to the requester. We verify this idea on
the NDN project [13], while most codes are implemented on
an app-level to make R2 computing scalable. Since the user
only cares about the result, we name our method “Request
Result” (“R2”). The major contributions of this work are as
follows:

1) We propose R2 to prove the feasibility of distributively
running the function based on metadata. R2 assumes
the metadata is stored together with its data and utilizes
a 2-phase mechanism to consecutively complete the
metadata extraction, cost estimation, function executor
selection, data extraction, function execution, and result
response.

2) To find the best node for function execution, we for-
mulate a distributive cost estimation process based on
metadata combined with a stop condition. This strategy
avoids scanning all nodes along the forwarding path
to reduce the result retrieving time automatically. The
stop condition can also be used in other uncertain edge
computing scenarios to distributedly select the best node.

3) We implement, evaluate and analyze the performance of
R2 on ndnSIM [18], involving numerous experiments
conducted on a real-world network topology dataset.
Additionally, to make R2 flexible and portable, we devel-
oped an application-level intermediate data processing
plugin named “Bolt”, which can be installed on a
computing-capable node to make R2 scalable. R2 is
open source and can be found on GitHub [19].

The remainder of this paper is as follows. Section II presents
the related work on computing within the continuum. Then
Section III introduces some preliminaries of NDN and the
details of the R2, including name format, forwarding pipeline,
cost optimization, applied scenes, and proofs. Section IV
discusses the experiments, numerical results, and the “Bolt”
implementation, while Section V discusses some security
issues. Finally, Section VI concludes this paper.

II. RELATED WORK

Executing functions within the continuum is a well studied
topic in many realms, such as in-network caching [23],
in-network computing [24], software-defined networking
(SDN) [25], and network function virtualization (NFV). ICN is
a straightforward way of forwarding the users’ interest without
a centralized coordinator and considering name resolving, and
thus in this paper, we focus on the related work utilizing
ICN. Table I compares the notable related works regarding the
implementation level of the forwarding strategy, the function
executing logic, and the selection of the function/service
executor. It should be noted that, in addition to the comparable
items in Table I, our work provides a simple distributed way
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TABLE I
COMPARISON WITH THE NOTABLE RELATED WORKS

Work!  Forwarding Executing  Distributed Executor
strategy level executor selection
selection space?
NFaaS  Custom NFD None (Service ANE
[20] duplicating)
RICE Builtin App None Producer
[16]
CEN Builtin App Moderate ANE
[21] (Task
scheduler)
NDNe  Builtin NFD Distributed ANE
[22] (Replies first)
ToT- Custom NFD Distributed PNE
NCN (Piggyback-
[17] ing)
ICedge Custom App Distributed ANE
[15] (Monitoring
metrics)
[9] Custom App Distributed ANE
(Monitoring
metrics)
R2 Custom App Distributed PNE

1. A: Nodes matched the given name (prefix); E: Nodes that can execute
the function; P: Nodes on the forwarding path.

2. CFN, NDNe, ICedge, and [9] send the function name to the executor
at first.

to check the existence of the requested data instantly and
minimize the end-to-end delay by using metadata.

Combining ICN and edge computing has inspired many
in-network processing works. According to their design goal,
these works can be generalized into either service routing or
best node selection. Routing function/service according to the
name, such as Named Function as a Service (NFaaS) [20]
and NDNe [22], can support many edge-native services. Thus,
NFaaS and NDNe are typical serverless computing methods
allowing cloud computing to jump into edge computing,
where instead of a centralized metastore, the function name
is employed to fabricate a decentralized service network.
This strategy affords a more scalable and flexible distributed
network using the function name as its routing policy.
Michat er al. propose a 4-way handshake remote method
invocation (RICE) [16] in NDN. In RICE, the consumer first
sends a function Interest (I1) carrying a handshake identifier
to the producer that runs the function and creates a reverse
path from the producer to the consumer. Second, when the
producer receives 11, it creates an Interest (I2) containing
the received identifier, following the previously established
reverse path towards the client. Third, the client responds
and sends the parameters (D2) after receiving 12. At last, the
producer executes the function with its input parameters D2
and responds to the result (D1) concerning I1. By integrating a
4-way handshake design, RICE solves several issues, including
timer and privacy concerns. However, it is not handled how
to select the proper node to run the function.

Memory and computing capacity decrease as we descend
levels within the continuum and move closer to the client [26].
Thus, selecting the best node is vital within the continuum,
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especially for critical applications. Michat et al. further pro-
pose the Compute First Networking (CFN) scheme that relies
on RICE to solve the node selection issue [21]. Forwarding
in the store-and-forward network like NDN affords the same
function to be cached everywhere. Thus, “compute reuse”
can also be utilized to avoid re-computing the same tasks
in a multi-user scenario [15]. Amadeo et al. [17] propose an
IoT-Named Computation Networking (IoT-NCN) framework.
This method estimates the service cost by piggybacking
a SERVICEEXECCOST field in the Interest and updates
the SERVICEEXECCOST value in a distributed manner.
After the Interest reaches the last edge node, an executor
acknowledgment 1is sent back to finish the best executor
election.

However, in a data-centric network, we argue that the data
name should also be a component of the Interest name. Most of
the above-mentioned service-oriented methods, except for IoT-
NCN, assume the routing strategies rely on the function name
rather than the data name, which is not capable of generalizing
the case where data is stored on the other edge node. At least
additional Interest needs to be sent. JoT-NCN [17] adds the
data name in the Interest in front of the function name and
routes it to the last edge node on the IoT domain to create
data-oriented distributed services. However, its cost estimation
does not integrate with metadata, i.e., it is ineffectual to the
actual data size and type, especially for other data analytic
applications.

Unlike current works, R2 overcomes the challenges men-
tioned above by utilizing 2-phase operations with metadata.
R2 uses the data name as its forwarding strategy to satisfy the
data-oriented applications and metadata to enhance the best
node selection accuracy.

ITI. R2

This section first provides the reference topology illustrated
in Fig. 2. This topology is tangible, especially in a cross-edge
analytic area [27], where the backbone router can represent
an edge site covering a city or a town, and the gateway can
be an edge server covering a community or a home. The
available computing (bandwidth) capacities of these nodes
(links) decrease (increase) as we descend levels and move
closer to the end device [26]. We assume the data with
their metadata are commonly stored in the end device. It is
worth noting that due to the ISP barrier, the number of hops
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between the two mutually reachable end devices in different
neighboring cities can be significant [28]. Thus, it is mandatory
in such an unstable environment to find the best node within
the continuum to perform the user’s function.

Section III-A provides some NDN preliminaries and a
straightforward example to clarify our ideas. Then, we give
an elucidation of the R2 process (Section III-C), includ-
ing name structure (Section III-B), cost model and the
best node selection (Section III-C.1), the stop condition of
reducing delay (Section III-C.2), proofs, and some analysis
(Section III-C.3).

A. NDN Preliminaries

As a concrete architecture of ICN, the NDN project [13]
aims to solve the communication network problem. In a
communication network (e.g., IP network), packets are named-
only endpoints, and thus it is hard to apply them to the
edge computing area where numerous devices exist. Instead
of IP, NDN uses the Name concept to fabricate the network
among different nodes. This architecture contains two basic
network data packets, Interest and Data. An Interest packet
comprises the Name of the requested data and other options
defined by the requester. Data consists of the data Name,
data contents, signature, and other user-defined information.
When a user (also called consumer in NDN) retrieves the
data, he first sends an Interest packet into the network. Then
the NDN forwarder (NDN Forwarding Daemon, NFD) enters
the forwarding pipeline to redirect Interest toward the data
producer according to the Interest name. Finally, the producer
responds to the requested data back to the consumer. The
consumers drive communication in NDN, i.e., a receiver-
driven communication mode. Other techniques, e.g., session
support [9], [29], and Long-Lived Interest, can also ease data
pushing from the producer.

The NDN design assumes hierarchically structured names.
For example, it retrieves the camera stream or the
file remote-monitor-data stored in Alice’s home
through NDN to give a further analysis like confirm-
ing her baby is safe. The Name of Interest might
be /alice’s-home/remote-monitor-data, where /
delineates name components in text representations. Each node
in NDN first checks its Content Store (CS), then Pending
Interest Table (PIT) and Forwarding Information Base (FIB),
and finally redirects this Interest by the Forwarding Strategy
to the data node located at Alice’s home.! This process is
commonly adopted in a longest-prefix matching method.

An example. Recently, many homes where families have
babies or are feeding pets have installed several types of
systems to monitor and control their security devices remotely
(using a smartphone and an app). These systems usually
contain machine/deep learning models to provide intelligent
computation and communication-intensive services such as fall
detection, fire warning, and home security checking. Some

ICS is a container to store Data packets, PIT is a list to store the unsatisfied
Interest packets, FIB is a routing table which maps Name components to
next hops, and Forwarding Strategy is a series of policies and rules about
forwarding Interest and Data packets.

data name function name
r A N\
/alice’s—home/remote—monitor—data /detectI/{object:baby, action:position}]
[ ——
prefix separator function parameters
Fig. 3. Interest name structure.

systems may need time to identify the most critical event,
e.g., the alarm system. A common feature of these jobs is the
a priori known dataset schema, as different schemas typically
have different processing logic. In Alice’s example, the camera
types and video format can be different, such as 60 fps at
12K, 110 fps at 8K, or 220 fps at 4K. Hence, different
function adaptors are needed during runtime. In addition to
data schema, data size is another vital indicator of the service
delay (in Alice’s example, the data volume is enormous).
Transmitting these massive HD video streams identified by
/alice’s-home/remote-monitor-data on the entire
network could be challenging for the backbone and Alice’s
internet expenditure.

Indeed, Alice cares about her baby’s position, and thus,
we need to find a trusted node? to identify or analyze the
baby’s status, i.e., get the baby’s position or extract one
picture having the baby by running a detect function in the
HD video with a short delay. Finding the node requires the
metadata of the remote-monitor-data, such as the data
size, format, and resolution. This information assists in making
a more accurate and fast choice on minimizing the analysis
delay before transmitting the large file. In this case, metadata
content can be in a JSON format {resolution:12k,
filetype:AVI, size:12MiB}, with the attribute size
being the most important. Furthermore, some devices have
flashcards that are incapable of storing the entire dataset,
and thus additional hard disc I/O operations are involved.
Nevertheless, metadata information can help us avoid these
devices.

Next, according to Alice’s example, we give the name
structure in R2.

B. R2 Interest Name Structure

Following Alice’s example as mentioned before, Fig. 3
depicts the entire Interest Name in R2.

Name in Fig. 3 means finding the data that named by
/alice’s-home/remote-monitor-data and obtain-
ing the baby’s position by running the detect func-
tion. It starts with a prefix /r2 identification used to
avoid mixing with the traditional NDN Interest. Then,
we place the /alice’s-home/remote-monitor-data
components behind /r2 to let NFD daemons find the
camera in Alice’s home. We put the function com-
ponent /detect behind data-name and separate them
with /sep. Component {object = baby, action =
position} involves the ApplicationParameters of
NDN Interest

2A series of trusted nodes can be selected by many techniques such as
blockchain consensus, secure multi-party computation, or manually deploying
authentication services in advance.
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Remark: Name matching strategies of NFD usually recog-
nize the Interest by the data name in a “Longest Prefix
Match” fashion. Here the data name is /alice’s-home/
remote-monitor-datanot /r2. This difference is solved
by the proposed “Bolt” and a custom Strategy. Other
techniques, such as “Forwarding Hint”, can be also used.
In general, “Bolt” is designed on an application level
can perform cost estimation, function execution, and states
reservation. If users or developers want to run R2 on a
computing-capable node such as base stations, gateways,
micro data centers and relatively powerful routers, they
can simply install the “Bolt” app on the node instead
of injecting junk codes or some unexpected behavior
into NFD.

C. R2 Process: A 2-Phase Precise Remote Method
Invocation Mechanism

Here, we re-emphasize the kernel question: Given a
function with its parameters and the involved metadata,
how to select the best node (i.e., the executor) in a
distributed manner and obtain the final output result? In
other words, how to select an executor in the forwarding path
to detect Alice’s baby’s status.

Before answering this question, three rudimentary points
need to be addressed. (1) The requested data should exist, i.e.,
/alice’s-home/remote-monitor-data should exist
when Alice wishes to access it, or analysis even by hand is
impossible. This point ensures the user a more reliable service.
(2) The function cost (for the remainder of the paper, “delay”
shall be a substitute for “cost”) can be easily estimated. The
executor can be quickly chosen based on the function detect
and the metadata {resolution:12k, filetype:AVI,
size:12MiB}, the executor can be quickly chosen. We use
metadata Interest that requests to solve these two points.
(3) The executor can be independently, automatically, and
distributively selected based on the first and the second point.
Some traditional solutions armed with consensus nodes intend
to deploy related components or services in the fixed edge
nodes (e.g., the edge cloud, which can be regarded as wireless
base stations) placed at the level of the network backbone may
not be an optimum choice. These solutions fulfill the user’s
tasks by gathering changeable information but may be trapped
in the consensus problem, as the changeable information is
not easy to synchronize. The third point refers to selecting
the executor based on metadata without requiring additional
coordination among nodes or a coordinator and that the
metadata is only the information carrier.

Thus, we design the R2 protocol comprising a 2-phase
architecture. The first phase neglects those 3 points by
selecting the executor through cost estimation based on
the function and the retrieved metadata. Developers or
maintainers can also start to warm the runtime environment in
this phase. The second phase involves executing the function
on the executor based on the retrieved Data and then replying
the result to the client. Thus, two Interest types are designed,
the metadata-Interest and result-Interest, respectively.
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Fig. 4. R2 end-to-end delay model.

Technically, compared to metadata-Interest, the result-Interest
carries a MinCostMarker? used to identify the executor.
The result-Interest might also be sent from a node within
the continuum, except for Alice, which we denote as b (bound)
for short. An optimized version of R2 in a step-by-step
approach is presented in Section III-C.4, illustrated in Fig. 6
(right part), introducing a 2-phase process with its time slices.
It should be noted that this version can automatically select the
executor with minimal cost by jointly considering the network
condition, the data source, and the computation capacity. Next,
we introduce in detail the R2 process, including the objective
function of minimizing the end-to-end delay, algorithms, and
proofs. Then we give a fundamental applied analysis of R2.
1) Modeling the Cost and Selecting the Executor: Objec-
tive function. Let V' = {v1,...,vy} denote a sequence of
edge nodes along the path from the client ¢ to the producer p,
v; 1s the chosen ¢th node to execute the function, Cfl be the
computation delay on v;, and th%e be the delay of transmitting
the type-packet from v; onto v;. Fig. 4 depicts the delay
model of R2 and includes the executor selection delays (or
the cost estimation, the first phase) and the result processing
(the second phase). The first phase mainly selects the best
executor v; according to the metadata retrieved by sending
an metadata-Interest. The second phase retrieves the raw data
from p by sending an result-Interest on a node b,* performs
the function on the node v;, and returns the result. Then the
end-to-end delay D may be written as:
D=1

metadata—interest

b
+ T2

etadata

cost estimation delay

b,p Pyt i i,c
+ Tresult—interest + Tdata + Cd + TTesult (1)
c,p D,b b,p Dyl
where vaetadata—interest’ Tmetadata’ Tresult—interest’ Tdata’

and T .. are the transfer delay of metadata-Interest ,

metadata, result-Interest , Data , and result, respectively.
Formula 1 indicates that the end-to-end delay contains two
parts. 797 + TPb is the delay of the

metadata—interest metadata b
executor selection of the first phase, and T

p

; . ) esult—interest +
Ty +CL+T" . the result processing delay of the second
phase.

3MinCostMarker tag can be found on https:/git.io/J3ysv
4We temporarily use ¢ and b interchangeably. Section III-C.2 gives the
specific usage of b.
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To minimize the end-to-end delay D, we select the best
executor v;. Thus, our objective function is min,,cy D. The
cost Tt o interess Of forwarding the metadata-Interest
to the producer is inevitable. Thus, we further simplify the

objective function to:

min D
v; €V
: p,b b,p D,i i i,c
= g_lelr‘}{Tmetadata+Tresult—interest +Tdata + Cd+TTesult
(2)
D, i i,c . ..
T,4a,Cy and T . are dominated by the position of

executor v; within the continuum, where v; is the pivot that
contributes to D.

We aim to determine v; to minimize D. A traditional method

checks all the nodes in V' by estimating the transmission
and computation cost in the first phase. Thus, we write
OptimizationOff (OptOff for short), OptOff is a base version
of R2 when b = ¢, i.e., OptOff is a fully two round-trip
method. During the first phase (executor selection), it scans
all forwarding nodes.
Cost estimation model. To determine v;, we use a simple
cost estimation model that utilizes instant bandwidth of the
forwarding path and CPU cycles of the executor. Let a
function f have a time complexity O(-) and involve a
metadata packet M. In R2, the critical indicators in M
are typically datasize, metasize of the data and the
metadata packet, respectively. Let Te!)" denote the estimated
transmitting data delay from p to v;, and Cefi the estimated
delay of executing f on v;. Then,

Mmetasize (3)
(Tstart - Tcurrent)

i
Ted = Matasize *

and

C- O(Mdatasize)

4
CPUfrequency ( )

Ce!) =
where Mdatasize, Mmetasiz& C, and CPUfrequency are the
size of the original dataset, size of M, CPU cycles per
operation, and CPU cycles per second, respectively.

Note that we estimate Te’" in real-time, and thus, other
methods can also be used, e.g., based on historical network
interfaces dataset.

Algorithm 1 depicts the executor selection steps in the
first phase and from a single node perspective. The algorithm
distributively finds an executor and uses a MinCostMarker
stored in the metadata to identify the executor v;. When the
metadata carried a MinCostMarker reaches a client, the
Bolt app running on the client extracts the MinCostMarker
and attaches it to the result-Interest. This marker is the key to
finding the executor in the second phase, and we preserve this
marker until the function is executed on v;.

However, we argue that finding the executor v; in the
second half of the first phase does not require traveling
all nodes in the path, i.e., v; € {a subset of V}. In other
words, b can be the node along the path from ¢ to p. Next,
we propose an optimization called the stop condition.

Algorithm 1 OptOff—Executor Selection (Finding v;)
1: if metadata Data packet then ,
2 etaCost «— costEstimation(metadata); > Tel* + Cé,
3 minCost — getMinCost(metadata);

4. if etaCost < minCost then

5

6

7

minCost «— etaCost;
MinCostMarker < hash(metadata, node.uuid);

: updateMinCost(metadata, minCost,
MinCostMarker);
8: end if
9: end if
Delay Type
Computation delay (CL)
A Total delay
= Transmission delay (Th,i,)
E« 1 Stop point b
[0 \\/
o
n'1 ﬁg ﬁ3 ﬁ4 ﬁ5 riG ri7

Node ID

Fig. 5. Example of finding the stop point b.

“«

2) Stop Condition: In the secretary problem [30], “a
manager sequentially observes applicants randomly for a
single position. When she observes the b-th applicant in
the sequence, she learns only the quality of that applicant
concerning those previously seen. Her objective is to select
the one who is the best overall—i.e., relative to all applicants,
among those seen and those not-yet-seen.”. For the scope of
this paper, we redefine this problem as precisely and not
probabilistically finding within the continuum the stop
point (the bound b) without traveling all nodes in V.

Based on our findings, cost modeling delays (T2 +

o/bw ) related to finding the best executor in the
OptOff method can be further reduced by replacing the “Alice”
node ¢ with a strict boundary intermediate node b. Fig. 5
intuitively depicts an example of finding bound b that initiates
the result-Interest. This figure presents seven nodes where a
computational task with its data is transferred from n; to
ny, and ny and ns are the most potent backbone nodes
or servers. The solid red line shows the computation delay,
which is negatively correlated to the computing power of
each node. The solid blue line shows the Data transmission
delay, and the solid green line shows the total delay. When
the transmission delay 77, is greater than the total delay
on every passed-by node, v; (in this example, n3) is already
involved. If we continuously check the remaining nodes after
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ns, i.e., ng and ny, we obtain only the dominated transmission
delay. This phenomenon applies to two terminals across the
backbone network, such as the cross-edge analytic area [27].
Thus, by replacing the marks in the estimation process,
formula 5 gives the stop condition:

pb DsJ J
Tely” > nax (Tely’ + Cey) (5)

Proof: The stop condition refers to the minimal cost node
N, 1s between n; and ny, i.e., 1 < m < b. The proof’s core
concept is to consider m’, with m’ > b, to check if its total
cost is smaller than node m. Note that the relation of “>" in
the stop condition does not change.

Suppose, contrary to our claim, that the stop cpndition is
false. Then we could find an m’ > b and Tel}™ > Tes’b,

imposing a minimal cost of T/ 4 Ce?"'. Then,

’ / . .
Te ,m + Ce™ < max (Tepvj + 06])
d d =gy d d

Because Tely™ > Tes’b, thus
m’ ! b
Tey " +Ceit >Tey
Finally, we get

ax, (Teh? +vCe)) < Ted’m/ +Cel < Joax. (Teh? +Cel)
Hence, m’ = j < b, contradicting our assumption that
m’ > b.When this condition is met, we stop the executor
selection process. (]

Based on the stop condition, Algorithm 2 presents an
optimized version of Algorithm 1, termed OptimizationAuto
(OptAuto for short).

Algorithm 2 OptAuto—Executor Selection (Finding v;) Within
Bound b

1: procedures of Algorithm 1;

2: if metadata Data packet then

3 maxCost «+ getMaxCost(metadata);

4 if Ted’z > maxCost then > the stop condition
5 TURN INTO second phase; > b is found
6:  else if maxCost < costEta then
7

8

9:

updateMaxCost(metadata, maxCost);
end if
end if

3) Applied Range Analysis of R2: Analyzing the stop
condition. The stop condition can operate automatically as a
plugin. This subsection gives a simple applied range analysis,
especially for the edge where the network and computing
are resource-constrained. It should be noted that n; is the
slowest node executing the function within the continuum.
Thus, we leave out the max symbol, i.e., Ted’b > Tely?+Ceél,.

The analysis comprises two scenes, a store and forward
network (e.g., NDN) and a universal network (e.g., NDN,
TCP/1P).

(1) Store and forward network:

X , . . , ,
Teh” > Teh? + Cely = Tely” —Tel? > Cel,
== Tefi’b > Cé),
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where sn represents for a store and forward network.
Teﬂl’b > (¢’ indicates that the stop condition operates
with the scene where the computational throughput, i.e.,
datasize/ Cefi, of the slowest node n; exceeds the transmis-
sion throughput from n; to n,. Here, b is the terminal (e.g.,
the client).

(2) A universal network:

Tes’b > Ted’b — Tes’j == Tes’b > C’eg

We eliminate the transmission delay from p to n; (i.e.,
Tes’j ) in the universal network, which is a relatively tight
constraint. Ted’b > Ceé indicates that the stop condition
operates with the scene where the computational throughput
of the slowest node n; exceeds the transmission throughput
from p to n; (or the terminal). This is useful when the delay
in transmitting data from n; to n; is challenging to estimate.
R2 vs. 1-round or 1-phase methods. It should be emphasized
that R2 has the benefits presented at the beginning of
Section III-C, even if the total delay is bigger than the
1-round methods in some cases. Nevertheless, if the raw data
is limited or the function is simple, R2 may not outperform
the 1-round methods (the methods regarding the Client or
Producer as the executor). Hence, we compare R2 and Client
in NDN to examine the applicability of R2 in terms of the
total delay. Without a loss of generality by assuming b = ¢,
R2 involves fully 2-phase operations in the worst case.

C,p p,C c
Tinterest + Tdata + Cd >D
p,C c p,C P
Tdata + Cd > Tmetadata + Tresultfinterest
Dyl i i,C
+ Tdata + Cd + Tresult

Because the metadata contains limited information, the meta-
data size can be roughly equal to the result-Interest. Then,
by

p,C c,p ~ c,p
Tmetadata + Tresultfinterest ~2 Tinterest
We obtain
D,C c c,p Dyt 7 i,c
= Tdata + Cd >2 Tinterest + Tdata + Cd + TTesult
N p,C Pt e c,p i e
Tdata Tdata TTesult >2 Tinterest + Cd Cd
:>sn i,c i,¢ C,p i c
Tdata - Tresult >2 Tinterest + Cd - Cd

It is clear that the computing power of n; is bigger than c,
and thus Cy < Cg. Writing 6 = C3 — C7, then
>2T0F 5

interest

T'L’,c _ Ti,c

data result
Let « be the ratio of the output result size to the input data
size.

— (1—a)Ty" >2T5P B)

data interest
In most data-intensive functions or applications, @ < 1.
Then,
~ i,cC C,p
= Tdata >21T; 4

interest

From the latter equation, we observe that if 27, ., < 4, i.e.,

the client’s computing power is smaller than node ¢ within the
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continuum, and the data size is greater than the result. This
applied condition is always true. Second, if the computing
resources are similar within the continuum, then § ~ 0. For
the data size analysis, we obtain

i,C i,C c,p ~
Tdata - Tresult >2 T;nterest —0
i,C c,p i,C
Tdata >2 Tmterest + Tresult (6)

Inequality 6 means the data size should be at least greater than
the 3-folds of the interest when ¢ is in the vicinity of p, which
is trivial.

4) R2 Process in a Step-by-Step Approach: Fig. 6 presents
OptAuto by depicting two phases (comprising five processes
or steps) of the R2 protocol under Alice’s example, who wants
to check her baby’s status. By neglecting the stop condition,
R2 becomes a fully 2-phase process. Due to the page size,
we involve four computing-capable nodes (ni,...,n4) and
one forwarding node (ns5). The left area in Fig. 6 provides
the R2 steps from the node perspective, while the right area
gives a bird’s eye view of the time delays per step. In Alice’s
example, she first sends a metadata Interest to get the remote-
monitor-data abstract. R2 automatically creates the traceable
traces, finds the best executor of “detect”, retrieves raw data
of remote-monitor-data, analyzes her baby’s status, and finally
sends the baby’s status to Alice. We describe these five steps
in detail below.

(1) Alice first sends a long-lived metadata-Interest
(under the name /r2/alice’s-home/remote-moni
tor-data/sep/ detect/{object =baby, action=
position}) into NDN. This Interest passes through the
nodes within the continuum, is captured by Bolt, leaves
a mapping correspondence in ITT, and finally reaches the
producer (or the camera at Alice’s home). The time consumed

D data— Interes; 1 this process is positively correlated
with the packet size of the metadata-Interest and the number
of hops between Alice and her home.

(2) The producer first replies with a metadata Data packet
containing {resolution:12k, filetype:AVI,
size:120MiB}. When the metadata moves towards Alice,
two critical actions are performed. The first is to find the
executor with a minimal end-to-end delay cost D based on
node configuration, “detect”, and metadata. According to the
stop condition, the second is to find the boundary b, i.e., ns.
R2 discards the created mapping correspondence (red records)
to reduce the ITT size in this process. After this process,
we obtain a MinCostMarker representing the executor,
i.e., ng. This marker comprises “detect”, parameters and
the node’s UUID, which can be viewed as the identifier of
Alice’s request. The time consumed T,’:L’fm data 1N this process
is positively correlated with the packet size of metadata and
the cost estimation step, which is insignificant.

(3) b issues a result-Interest carrying the MinCostMarker
to the producer. Since all we need is the raw data, i.e., the
HD video file remote-monitor-data, any other operations
during transmitting the raw data between b and the producer
are needless. Thus, the result-Interest of the newly added
mapping correspondence in ITT (green records) is set to be
the Non-Long-Lived Interest type. We can also perform

warm-up services, e.g., video/image data processing
unit, DNN model, and libraries related to performing
detect (baby, position), on ny when it receives the
notification from b to avoid a cold start. The time consumed
Tfé’;ult_ Interest 1D this process is positively correlated with
the packet size of result-Interest, the number of hops between
the boundary and Alice’s home. For completeness, it should
be mentioned that the path guided by the NDN routing table
(or PIT), despite being unstable, it can be settled through
session support [29].

For the step (4) and (5), the executor (i.e., m4) runs
the function after it receives the Data to provide Alice’s
baby’s status. Finally, the result is returned to the client.
The time consumed in processes 4 and 5 comprise and are
positively correlated with three parts: result transfer delay
T computation delay C and raw data transfer delay

result’

TI)J

data*

IV. EVALUATION AND RESULTS

To evaluate R2’s performance, we design an intermediate
data processing logic on the “Bolt” application level and
implement it in ndnSIM. This section first illustrates the
“Bolt” logic (Section IV-A) and then exploits it to evaluate
R2 (Section IV-B).

A. R2 Bolt: Intermediate Data Processing on App Level

Automatically running a function requires a modular imple-
mentation not only for maintenance but also for development.
A general forwarding framework named NDN-trace [31]
processes the intermediate Interest and Data. From a scalability
and compatibility perspective, we extend NDN-trace and
perform a custom forwarding strategy to support function
execution on an application level, i.e., Bolt.) Next, we provide
the R2 Bolt app details.

Fig. 7 depicts the custom forwarding strategy pipeline of
R2. The red and green dotted lines frame the R2 Strategy
and the NFD (the NDN Forwarding Daemon). When NFD
receives an R2 Interest, it is forwarded according to the FIB
(Forwarding Information Base) to the Bolt of that node. Inside
NFD, R2 Interests are handed over to our custom R2 Strategy
extended from the native BestRouteStrategy?2 of NDN.
R2 Strategy first performs a next-hop lookup on the actual
data name /alice’s-home/remote-monitor-data
only, extracted by the “get lookup name” method
instead of the entire R2 Interest name with the prefix “/r2”.
Then, after checking the FIB, we directly obtain the next
hop (or face) matched to the name /alice’s-home/

remote-monitor-data by performing the method
“get mnext hops’. At last, /r2/alice’s-home/
remote-monitor-data is directly sent to the

matched next hop (or face). Note that the next hop (or
face) contains two types: Bolt and the next hop node.
Because the Bolt app registers the prefix “/r2” using
InterestFilter, it can directly identify and capture

5The name “Bolt” is inspired by Apache Storm. In Apache Storm, the logic
for processing data tuples in a node is called a “Bolt”.
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Fig. 8. Forwarding interest/data using Bolt app.

the R2 Interest. If the node does not install the Bolt or is
a computing-incapable node R2 Strategy, it will forward
/r2/alice’s-home/remote-monitor-data to the
direction of /alice’s-home/remote-monitor-data
directly. The entire process is repeated at every
node encountered on the path(s) until R2 Interest
/alice’s-home/remote-monitor-data reaches
the target prefix, i.e., Alice’s home.

Fig. 8 depicts a forwarding pipeline using three computing-
capable nodes to demonstrate the Bolt logic. To simplify the
process, we do not distinguish between Metadata and Data.
Alice (n1) sends an Interest (under the name /r2/alice’s-
home/remote-monitor-data/sep/detect/paras)
into the upstream. Its true data name /alice’s-home/
remote-monitor-data is first extracted by a custom
Strategy implemented at the NFD level, and then it is
forwarded to the next hops according to the forwarding
policy by scanning FIB.® When the incoming R2 Interest is
received by the NFD, which has Bolt installed, it is caught
by Bolt Face and transmitted into the processing logic
(processingInterest in Fig. 9). Currently, Bolt has
an Interest Trace Table (ITT) performing three actions: (1)
Clones the incoming Interest and append a random number

It is worth noting that R2 Interest starts with a prefix /r2
(Fig.  3), while the forwarding process of NFD only cares about
/alice’s-home/remote-monitor-data. Thus, the right sub-
components in the names are extracted through custom Strategy in
the NFD level to enter the proper forwarding pipeline. The Interest Name in

PIT is still starts with /r2 and does not change.

1 void onInterest (const InterestFilter& filter, const
Interest& inInterest)

2 {

3 // Discard looped Interest

4 if (Islooped(inInterest)) return;

5 // Clone the incoming Interest and create the
mapping relationship

6 preProcessingInterest (inInterest,

7 // Process the cloned Interest (i.e.,

8 processingInterest (filter, inInterest,
)i

9 // Issues the cloned Interest

afterProcessingInterest (inInterest,

outInterest);
outInterest)
outInterest

outInterest);

11}

Fig. 9. Pseudo-code of processing an incoming Interest in Bolt: a single
node perspective.

(Interest identifier, e.g., 11, 12,....) to the tail of the cloned
Interest Names. (2) Creates a mapping entry between the
cloned and the origin Interest and inserts the entry into ITT.
(3) Deletes the entry if the Interest is satisfied (red records in
ITT). Additionally, since the function execution process may
take time, another important role of ITT is manipulating the
lifetime (Long-Lived Interest flag in ITT) of the R2 Interest
to avoid the time-out issue imposed by solely employing PIT.
As the ndnSIM declares, these codes can be applied to the
production with minor modifications.

The pseudo-code to process an incoming Interest is
depicted in Fig. 9. The parameter inInterest can be
referred to as I1, I2, and I3 (start with a prefix /r2) that
flows into Bolt in Fig. 8. Line 6 first clones those incoming
Interests then inserts the mapping relationship into ITT,
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Fig. 10. Rocketfuel dataset.

and finally exits the cloned outInterest. Sending out the
outInterest (Line 10) refers to T2, I3 and I4 that exit
Bolt in Fig. 8. In the processingInterest (Line 8),
some additional operations can be applied to outInterest,
e.g., make the interest long-lived, or add user-interested tags.
In the R2 Bolt, processing the Data is technically the same
as processing Interest logic. For further details, the reader
is referred to the source code.’

B. Evaluation

This section evaluates R2 via an extensive simulation study.
We implement four notable methods, including OptOff and
OptAuto, to testify the end-to-end delay in ndnSIM [18],
where ndnSIM is an NS-3-based simulator for NDN [13]
implementation. Two additional methods are the “Producer”
and “Local”, where the former means pushing the function
down to the storage (data location), a typically distributed data-
base management method. However, the Producer’s computing
power and energy are usually limited. The Local method
considers the client directly retrieving the Data and executing
the function itself. All R2 codes are based on ndnSIM-2.8,
NFD-0.7.0, and all the experiments are performed on macOS
utilizing an Intel i5 Dual-core at 2.7GHz.

Dataset. We adopt a real-world network topology, i.e.,
rocketfuel [32], comprising 282 nodes, including 177 clients,
89 gateways, and 16 backbones. The topology is illustrated in
Fig. 10, where the two yellow nodes are the client (c) and the
producer (p). The blue backbone is the high-level performance
edge node, the green gateway is the middle-level performance
edge node, and the red device is the low-level edge node
performance. Table II shows this topology’s configurations,
where H and M denote the high and middle performance,
respectively, and C the end device (Client or Producer).
It is worth noting that the available bandwidth is the total
bandwidth split by numerous nodes due to concurrency and
collision.

Indicators. We focus on measuring the average end-to-
end delay and the hop-by-hop delay. End-to-end delay is
used to compare four methods, and the hop-by-hop delay is
used to test whether the stop condition is working. Different
complexity of the function can have a different impact on the

"Intermediate data processing code in Bolt: https:/git.io/J3iux
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TABLE II
ToPOLOGY CONFIGURATION

Item H(-H) H(-M) M(-C)
Available bandwidth (Mbps) 10 ~40 20~40 40~ 100
CPU (GHz) 3~ 4 2~3  05~2
Memory (GB) 32~128 8~32 2~38

Executor
0.4+ Local

A optoff

B OptAuto
0.3 Producer

Time [s]

10 102 1024
Data size [Byte]

10240 102400

Fig. 11. End-to-end delay of 4 methods.

cost estimation model. Thus, given the competitor methods,
we categorize the time complexity of the function as O(logn),
O(n), and O(n?) and fixed space complexity as O(n),® where

n is the data size. In the simulation, we set the ratio of the
function output size to its input data size as « = 0.1.

C. Results

Fig. 11 presents the end-to-end delay of the four evaluated
methods by varying the data size and time complexity.
Fig. 9 indicates that the end-to-end delay increases as the data
size and complexity rise. When the data size is small, i.e., data
size < 102 bytes, both the Local and Producer present a low
delay level. However, when the data size exceeds 1024 bytes
(1 KiB, which is very rare in today’s network communication),
OptAuto and OptOff gradually get better than the Local and
Producer. Hence, the executor is essential for the computations
within the continuum.

Fig. 11 (a) illustrates that OptOff, which has a complexity
of O(logn), is always at a high level because it needs a
fully two-round-trip to find the executor and the transmission
dominating the total delay. Since the O(logn) operations
are not large, the Producer is faster than the competitor
methods. Nevertheless, we do not prefer the task compute at
the producer because its computing power is usually limited.
Meanwhile, OptAuto obtains a similar result with the Producer
when the data size is larger than 1024 bytes, i.e., the bound

8For further information on IOPS the reader is referred to: https:/docs.
aws.amazon.com/AW SEC2/latest/UserGuide/ebs-io-characteristics.html
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Packet flow type —— Data —— Interest

(a) Hop-by-hop accumulating delay of O(log(n)).

Packet flow type ~—— Data —— Interest

Time [s]

Node ID

(b) Hop-by-hop accumulating delay of O(n).

Packet flow type ~—— Data —— Interest

Time [s]

(c) Hop-by-hop accumulating delay of O(n?).

Fig. 12.
data size.

Hop-by-hop accumulating delay of OptAuto and OptOff varying

b is found, and a fully two-round-trip compared with OptOff
is avoided. Local also presents an increased processing time
once the data size exceeds 1024 bytes, which integrating with
OptAuto implies that the computation and the transmission

delays are of the same order and both dominate the total
delay. It should be noted that the methods having O(logn)
complexity are not everywhere reachable, especially in the data
analysis realm. Fig. 11 (b) and Fig. 11 (c) the four methods
with O(n) and O(n?), respectively. From this figure, it is
evident that OptAuto manages an acceptable result compared
with Local and Producer. When the data size reaches 100 KiB,
the speedup ratio Local/OptAuto reaches 1.84, 2.37, and
4.61 for O(logn), O(n), and O(n?), respectively.

From the stop condition analysis of Section III-C.2,
we know that the bound b is related to the time complexity
and transmission delay. Next, to verify whether the bound b is
found, we plot the hop-by-hop accumulating delay of OptAuto
and OptOff varying data size (entitled “Method-Datasize”),
presented in Fig. 12. It is straightforward that in most cases,
OptAuto finds the bound b compared to the OptOff in most
cases, OptAuto finds the bound b compared to the OptOft.
Most importantly, OptAuto gives the same executor as OptOff,
proving the effectiveness of the stop condition that does not
check all nodes.

V. DISCUSSION

The reader might have security-related concerns for the
Interest and Data intermediate processing. However, this is
a well-discussed topic in [13] and [31]. In addition to ICN’s
content-based security model, we implement our solution on
an application and not system level, and thus many possible
ways can be utilized to enable authentication services. Feasible
solutions involve nodes within the continuum having the
public key of each other or other decentralized authentication
methods [33]. Nevertheless, security concerns are out of this
paper’s scope, and thus we will not further examine them.

This version of R2 focuses on how to pick the best
computing-capable executor within the forwarding path. Thus,
mobility is not paid much attention. Recent mobility-related
works mainly focus on two types of nodes (consumer and
producer) and three categories (mapping-based, tracing-based,
and data depot) [34], [35], [36]. For R2, mobility support
needs to be built on top of these ideas. Specifically, in R2,
the executor is the role of the consumer compared to the data
producer, and the role of the data producer remains unchanged.
Thus, if the producer moves, the methods mentioned in [34],
[35], and [36] can be adapted. Another problem is that
intermediate forwarding nodes have mobility. Current works
have not paid much attention to the intermediate forwarding
nodes, but it is more common in self-organizing and stochastic
networks. For the consumer, the executor is the role of the
producer that may use a tracing-based approach to proactively
inform the nodes on the forwarding path to establishing a new
channel, which ensures that the executor is always accessible.
Another solution is to carry the unique identifier of the
executor as a hint when the executor performs the process
of returning ACK Data to the consumer, which ensures that
we can eventually look up the executor.

VI. CONCLUSION

This paper discusses the feasibility of R2, a 2-phase novel
mechanism for data processing in edge computing. A 2-phase
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design has many potential benefits, ensuring the function
execution integrity, checking the node’s health status in the
client’s path towards the producer, and, most importantly,
choosing the best node to execute the function. R2 leverages
the NDN paradigm for data retrieval from data sources,
enhances it to provide a decentralized method invocation
mechanism with the objectives to (1) minimize the end-
to-end delay by limiting the raw data traffic crossing the
network and selecting the executor and (2) reduce the first
round trip time by an intelligent stop condition. In addition,
we developed “Bolt” to process the intermediate data on
the app level in ndnSIM. “Bolt” can be installed on the
selected computing-capable nodes to provide scalable service.
We believe that our freely available code [19] can help
researchers and developers verify their ideas smoothly.

VII. FUTURE WORKS

Currently, R2 only handled a single user request in this
paper. We solve the multi-user requests, including “compute
reuse” in the future. Future works also include extending
R2 to handle application (i.e., solving the functions/tasks
directed acyclic graph (DAG)), re-forwarding the user’s
Interest according to function name by the intermediate nodes
to scale out the executor selection space, storing metadata and
data with different locations.

Changing metadata-Interest’s lifetime from long-lived to
regular is another future work. We think the latter is
feasible and is currently implemented by inflating the timer
of the metadata-Interest entry in the PIT through sending
a refreshing Interest or an ACK Data that carries the
estimated function-execution time from the selected executor
back to the consumer. This is similar to RICE’s “Interest
Acknowledgements” [16]. The most significant difference is
that the refreshing action in R2 is sent from the executor and
not from the consumer or the producer. Because the executor
has the metadata, R2 affords a more precise function-execution
time.

Instead of identifying and capturing the current R2 Interest
by the prefix “/r2”, effectively capturing the Interests at
the application level by identifying the user-selected Name
components is another future research direction. Note that our
purpose is still putting the computation logic on the application
level, not the NFD level. Another possible solution is adding
“/r2” as a postfix, identifying the postfix “/r2” and forwarding
it to the face of the Bolt app instead of the next-hop node,
which still integrates with the forwarding Strategy. This Strat-
egy seems similar to the Interests tracing method KITE [36]
and opposes the current R2 Strategy. To the best of our knowl-
edge, designing a scalable naming convention is a concern of
many recent works that put the function or service identifier at
the head of the Name, e.g., name as a function. Overcoming
this issue may bring R2 scalability into a new stage.
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