
582 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

Toward Distributively Build Time-Sensitive-Service
Coverage in Compute First Networking

Jianpeng Qi , Xiao Su, and Rui Wang

Abstract— Despite placing services and computing resources
at the edge of the network for ultra-low latency, we still
face the challenge of centralized scheduling costs, including
delays from additional request forwarding and resource selection.
To address this challenge, we propose SmartBuoy, a new com-
puting paradigm. Our approach starts with a service coverage
concept that assumes users within the coverage have high
access availability. To enable users to perceive service status,
we design a distributed metric table that synchronizes service sta-
tus periodically and distributively. We propose coverage indicator
updating principles to make the updating process more effective.
We then implement two distributed methods, SmartBuoy-Time
and SmartBuoy-Reliability, that enable users to perceive service
capability directly and immediately. To determine the metric
table update window size, we provide an analysis method based
on user access patterns and offer a theoretical upper bound
in a dynamic environment, making SmartBuoy easy to use.
Finally, we implement the proposed methods distributively on an
open-source edge computing simulator. Experiments on a real-
world network topology dataset demonstrate the efficiency of
SmartBuoy in reducing delays and improving the success rate.

Index Terms— Edge computing, time-sensitive service, service
discovering, service coverage, analysis.

I. INTRODUCTION

IDC ESTIMATES that by 2025 41.6 billion devices
will be interconnected, and data volume will reach

79.4 zettabytes (ZB) [1]. Current cloud computing architec-
tures do not afford such an overwhelming amount of devices
and data due to high latency, limited bandwidth, high carbon
footprint, and poor security [2], leading to a high cost for
maintaining many TSs (time-sensitive services). Thus, edge
computing, an accelerator of cloud computing, affords better
computing resources for users and thus gains widespread
attention, making the end-to-end delays of the networked
services smaller and smaller.

Typically, end-to-end delays of a networked service consist
of two phases: (1) Data transmission, including forwarding
and scheduling the user’s request and, if needed, returning

Manuscript received 14 November 2022; revised 19 March 2023 and 11 May
2023; accepted 23 June 2023; approved by IEEE/ACM TRANSACTIONS ON
NETWORKING Editor C. Peng. Date of publication 3 July 2023; date of current
version 16 February 2024. This work was supported by the National Natural
Science Foundation of China under Grant 62173158. (Corresponding author:
Rui Wang.)

Jianpeng Qi is with the School of Computer and Communication Engi-
neering, University of Science and Technology Beijing, Beijing 100083,
China, and also with the College of Computer Science and Technology,
Ocean University of China, Qingdao, Shandong 266100, China (e-mail:
jianpengqi@126.com).

Xiao Su and Rui Wang are with the School of Computer and Communication
Engineering, University of Science and Technology Beijing, Beijing 100083,
China (e-mail: ustbsuxiao@163.com; wangrui@ustb.edu.cn).

Digital Object Identifier 10.1109/TNET.2023.3289830

the corresponding result, and (2) service computing, i.e.,
running the service or function on the computing node. Many
works aimed to reduce end-to-end delays belong to these two
categories. In the conventional network, where the forwarding
nodes are just doing the data transmission, and the computing
resources are usually the terminals at the network edge,
reducing the end-to-end delays is thus usually separable yet
not optimal. Nevertheless, in today’s ubiquitous computing
architectures, where computing nodes are embedded in the
network, end-to-end delays can be further reduced using these
resources. Recently, many novel computing paradigms have
become popular, such as the COIN (in-network computing or
COmputing In the Network)1 and its improved version CFN
(Compute First/Force/Power Networking) [4], [5], [6].

Even though many novel computing paradigms have been
proposed, unlike many other moderate services, TSs that need
to finish within a hard delay are still suffering from many
shortages. Two of the most noticeable steps during the data
transmission phase are the additional service discovering and
centralized coordinator scheduling. The former step aims to
find where the requested service is and the latter to find the
proper service node among all candidates. Obviously, these
two steps introduce forwarding and scheduling latencies [7].
To solve this, many novel techniques and frameworks are
proposed, such as DHT (Distributed Hash Table) [8], [9],
NFaaS (Named Function as a Service) [10], and CFN [4].

Most importantly, according to our observation, when find-
ing the proper service node, users backed by some of those
techniques still need to directly or indirectly sense the global
searching space (resources), which inevitably leads to a high
searching cost. Even with some efficient indexing algorithms,
synchronizing the resource status in the global searching space
is still hard to promise, not to mention the single-point failure.
Take the popular DHT technique as an example; the size of
the hashing space is the total number of global resources.
Indeed, many empirical practices prepare a larger size in case
of address collision. This characteristic may cause by common
sense that finding the optimal solution needs information on
global resources. Fortunately, in [11], we propose a dynamic
stop condition concept, a condition to identify the service
coverage border within the forwarding path to stop searching
resources early during the searching step while getting the
optimal result without scanning all nodes.

In this paper, we still argue that the resource searching phase
is useless when the request latency between the remote service

1We invite the readers to check [3] published in IETF for more interesting
use cases.

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Ocean University of China. Downloaded on July 15,2024 at 13:37:24 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6150-9773
https://orcid.org/0000-0002-2284-9780

QI et al.: TOWARD DISTRIBUTIVELY BUILD TIME-SENSITIVE-SERVICE COVERAGE 583

node and the users is higher than the given deadline. In other
words, to save costs, users or schedulers should be blind to the
remote service resources if their distance (or service latencies)
are far away from the resources. Section III gives a more
concentrated illustration of the centralized and decentralized
service provisioning processes to explain the abovementioned
challenges.

To avoid the forwarding latencies and reduce the global
searching space, which is different from the previous works
mentioned in II-A, we propose a service coverage concept in
the compute first networking domain. It is like a fisherman
declares his property by shaping a coverage identified by
many buoys on the ocean. Then, we propose a novel frame-
work, SmartBuoy, to distributively shape the service coverage.
Within the coverage, users have a high promise to access
the time-sensitive services successfully and are effectively
and thoroughly blinded to the resources out of the coverage.
Further, we propose two novel distributed indicators, time and
reliability, and implement them in SmartBuoy. The significant
contributions of this work are as follows:

• To fulfill users’ time-sensitive service requirements,
we propose a novel framework SmartBuoy to shape
the service coverage. SmartBuoy pushes service states
near the users and can avoid the additional forwarding
latencies introduced by the centralized scheduler and
reduce the service nodes searching space. Users within
the coverage can quickly know the service status without
a centralized coordinator.

• We list several simple design and usage principles of
SmartBuoy. Based on these principles, we propose two
distributed indicators, SmartBuoy-Time and SmartBuoy-
Reliability, to shape the service coverage and to make the
users sense the service as fast as possible.

• Under the Poisson process, we analyze the time window
design of the service states updating and infer its upper
bound. Analysis methodology to this bound are general
and can help the current popular computing paradigm
such as compute first networking design an effective
synchronizing mechanism.

• We implement, evaluate and analyze the performance of
SmartBuoy, involving numerous experiments conducted
on a real-world ISP network topology dataset.

Section II presents an analysis of related works, with
a particular focus on distributed compute-first networking.
Section III provides the motivation and proposed framework.
In addition, Section IV-A outlines several key design princi-
ples, while Sections IV-C and IV-D describe two distributed
indicators for shaping service coverage: time and reliability,
respectively. Section V presents an analysis of the time win-
dow size for updating indicators based on various probabilistic
and statistical models, as well as the Age of Information (AoI).
Section VI presents simulation results, which demonstrate
the effectiveness of the proposed framework. In addition,
Section VII discusses several interesting problems related
to SmartBuoy’s roadmap. Finally, the paper concludes in
Section VIII.

II. RELATED WORK

We classify related work into two categories: 1) Service
discovering aims to tell users where the requested service is.
2) Reducing the resource searching space when organizing
the service-resource mapping relations. We need to note that
the second category is to reduce the scheduling cost by
filtering unrelated nodes. In the following, we review work
on decentralized technologies.

A. Service Discovering

Service discovering plays an important role in selecting an
appropriate service or node and further fulfil the requester’s
demands [22].

Distributed Hash Table (DHT) [8], [9] is a classical way
of directly finding the requested services, especially the data,
which hashes the data name (key) and distributes the related
identifiers into the distributed system. To support location-
aware services, Locality Sensitive Hashing (LSH) [23] is
further integrated. Recently, LSH as a useful tool accelerates
the data accessing speed in Information-Centric Network-
ing (ICN) [24].

ICN and, in particular, its prominent Named Data Net-
working (NDN) instantiation [25] that constructs the network
based on the data name rather than IP provides a realistic
solution. Specifically, the work based on NDN uses the
function/service name as its routing rules to find the proper
service node in a fully distributed manner. This strategy
provides several scalable and robust services, e.g., serverless
computing, function as a service, and in-network computing
[26], [27], [28]. Routing function/service according to the
name, such as Named Function as a Service (NFaaS) [10],
edge cloud selection in Cross-Service Communication [21],
Compute-First Networking (CFN) [4] and NDNe [29], can
support many edge-native services.

To gather the runtime information (or status) of services and
make the services distributively discovered across the Internet,
many related fields are becoming hot, such as Service-Centric
Networking (SCN) [30], Cross-Service Communication
(CSC) [21]. Enabling techniques, such as Software Defined
Networking (SDN) and NDN, are making them more practica-
ble [32], [33]. A notable purpose of SCN or CSC is to solve the
heterogeneous problems that existed in different edge clouds or
service providers, therefore, one or more coordinators usually
existed to make the service performance data circulate in the
whole system.

Another direction is using the Ad Hoc Network to automat-
ically select a global or a local coordinator, which significantly
speeds up the scalability of the service management, such
as [8] and [9]. Recently, a novel concept Computing Power
Network [5] is proposed. It makes services tactile to Internet
users by injecting the dynamic state of services into the routing
protocol.

In contrast to the aforementioned research, our work only
includes a subset of services in the network in our routing
table. Moreover, we provide a theoretical upper bound for
the status updating interval, which was not presented in the
previous study.

Authorized licensed use limited to: Ocean University of China. Downloaded on July 15,2024 at 13:37:24 UTC from IEEE Xplore. Restrictions apply.

584 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

TABLE I
THE COMPARISON OF NOTABLE RELATED WORKS WITH SMARTBUOY

B. Reducing the Searching Space

Because the resources in edge computing are usually
dynamic, huge, and various, gathering the status of these
distributed resources is helpful in quickly forwarding users’
requests to the suitable service node. However, achieving
this is challenging because of the considerable searching or
monitoring space. Therefore, reducing the resource searching
space is essential.

To end this, many distributed grid and tree-based index-
ing schemas and algorithms are proposed. References [10]
and [28] are the first cases adopting the tree-like naming
schema. Each node of these works has a sketchy view or
direction of the service node candidates. Further, CFN using
this novel design achieves distributively gathering the status
of the nodes [4]. Similarly, [34] also proposes a distributed
resources monitoring method, CFN-dyncast, according to the
load of each computing site and the network status. However,
searching space can be significantly further improved in these
works.

To limit the search space, researchers have proposed several
methods. One such method, called DoSRA, is introduced
in [20] and is based on a service coverage approach. DoSRA
builds a resources pool with a fixed size k hops radius,
centered around the end devices. However, this approach can
add additional pressure to the end devices. In [13], the authors
use a reachability table to monitor the status of fog nodes
within a specific domain or area, considering factors such as
round-trip and processing delays. This domain knowledge can
be useful in various settings, such as smart homes or fac-
tories. Alternatively, [35] compares four different fog colony
methods: centralized, independent, with communication, and
with overlap. A fog colony comprises the edge nodes in a
specific geographical region, and these methods differ in their
coordination and communication strategies.

In some cases, distance can also be used to reduce the
search space, as in the floating content (FC) method [36], [37]
for opportunistic networking or ad hoc networks. FC pro-
vides a predefined shared area where content can be shared
among mobile devices in the region based on communication
range constraints. Similarly, computing nodes can also be
selected based on distance, such as in the drop computing
approach [38].

Table I presents several notable works that have focused
on distributively finding suitable nodes to perform services.
By employing two or three filtering steps, these methods
can significantly reduce the original search space to a set of
top-X candidates, thereby improving scheduling efficiency.
However, there is still considerable room for improvement
in the final search space used when making a scheduling
decision. Many recent works that rely on fixed borders or
centralized approaches may not be suitable for time-sensitive
scenarios in which resource utilization is dynamic (as dis-
cussed in Section III).

In our previous work [11], we demonstrated that it is
feasible to mine a dynamic border of the search space
for finding a global optimal service node among forward-
ing nodes in a dynamic edge environment. In this work,
we propose the service coverage concept and introduce two
automatic and distributed methods for solving the problems
of distributed service discovery and search space reduction.
We also provide a theoretical bound and analysis steps
for determining the optimal status updating window size,
which makes our proposed approach, SmartBuoy, easy to
use.

III. MOTIVATION AND SMARTBUOY FRAMEWORK

Many applications or services have relatively short deadlines
that must be met [39]. To see a partial list of these deadlines,

Authorized licensed use limited to: Ocean University of China. Downloaded on July 15,2024 at 13:37:24 UTC from IEEE Xplore. Restrictions apply.

QI et al.: TOWARD DISTRIBUTIVELY BUILD TIME-SENSITIVE-SERVICE COVERAGE 585

Fig. 1. Service provisioning processes: a centralized manner.

one can check the list we maintain on GitHub.2 To ensure a
good user experience, these applications and services typically
have an end-to-end delay upper bound or deadline threshold
that must be met.

In this section, we will use various deadline thresholds to
indicate different services, which can be achieved by varying
the deadline threshold TTHR

s . We will assume that the services
are pre-installed on specific nodes, which we discussed in
Section VII as a service placement problem. To make our
motivation more clear, we compare two computing paradigms
including the conventional centralized manner and our pro-
posed decentralized SmartBuoy framework.

A. A Conventional Way

This example proves that centralized service discovering
and scheduling may not be appropriate for TS applications.
As shown in Fig. 1, Coordinator maintains and monitors four
service nodes {n1, n2, n3, n4} scattered in different areas.
In order to provide a suitable service node for a user request,
the Coordinator needs to establish a heartbeat link to receive
the nodes’ runtime status.

Take an AR service as an example, which includes many
bandwidth- and/or computation-intensive components such as
data “receiving”, task “processing” and augmented image
“displaying” [3]. “Processing” is of the most important steps to
analyze the sensed data from the physical world and then add
them to a live camera feed or situation [40]. Because of the
critical time requirement, putting this task in the remote cloud
is unrealistic. However, in a resource-constrained environment,
finding a powerful node to process it is vital but challenging.

Therefore, popular ways usually follow three steps: (1) Ser-
vice discovering. A user ui first sends a resources request
to the Coordinator maintaining the global resource status by
a metric (or metadata) table. One of the most well-known
cases is NameNode in Apache Hadoop. Then (2) Centralized
coordinator scheduling. The Coordinator checks its metric
table and compares the maintained service node candidates
according to their ability, response delay, and location, and

2Time requirements for services: https://github.com/qijianpeng/time-
requirement-for-services.

finally returns n4 in area S3 as her service node. In this
step, Coordinator usually monitors and maintains numerous
geographical devices’ status through an unstable and change-
able network, which makes the process unreliable and carbon
footprint heavy. At last, (3) ui sends her task to n4 for further
processing.

Another way of service discovering is regarding the coor-
dinator as an information forwarding proxy. This way, (1) ui

sends her information (location, angle, and moving speed) to
the coordinator, and (4) the coordinator forwards the informa-
tion to n4 after checking the candidate’s status.

However, a constraint for services is that, like AR, end-
to-end latencies usually need no more than 20 ms. Based
on the network latency analysis in [41], even for the fastest
5G, the median RTT (Round-Trip Time) of the nearest edge
site from the end-user is still 10.4 ms. That means there is
almost no time left to analyze users’ data after the coordinator
found a powerful computing node, i.e., service discovering
and scheduling cost a half time! Thus, we conclude that this
centralized computing paradigm is not applicable to time-
sensitive applications.

Dig deeper; we have discovered that, in addition to the
forwarding delays caused by service discovery and scheduling,
utilizing a metric table in this paradigm results in all candidate
nodes being considered by the user. This ultimately leads to
a significantly larger search space and a higher cost, even
for idle remote nodes like n3 in area S2, which have no
chance of being selected as the service node. This lack of
efficiency is also evident in the recently popular “compute first
networking” [4], [5]. Furthermore, the coordinator can become
overwhelmed by the global performance metric synchroniza-
tion, particularly when available network and computation
resources are dynamically changing. In summary, this scenario
results in unnecessary networking and computing resources
being expended due to the large global search space.

B. SmartBuoy Framework

Aiming to avoid the additional forwarding delays and the
global searching space, we propose a novel framework that
shapes a service coverage to fulfill users’ demands, especially
for the TS applications, namely SmartBuoy. SmartBuoy also
adapts to the dynamic environment, especially when the band-
width and computing ability are changeable.

To get the design idea of SmartBuoy, one may be familiar
with the “15-Minute City” scenario in a smart city where
the locals can access all necessities at distances that would
not take them more than 15 minutes by their convenient
transportation [42]. In the scenario, local users are blinded to
the remote infrastructures, e.g., a parking lot far 10 KM away
from their home. Because for them having much information
about these remote infrastructures is useless but a pressure,
i.e., “a relative afar is less important than a close neighbor.”

Similarly, a service node in this paper can be regarded as
a center of its service coverage. Users within the coverage
are the “infrastructures” that must be fulfilled, i.e., service-
oriented. Fig. 2 depicts this imagination where each shaded
ring area denotes the TS service coverage, i.e., S1, S2,

Authorized licensed use limited to: Ocean University of China. Downloaded on July 15,2024 at 13:37:24 UTC from IEEE Xplore. Restrictions apply.

586 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

Fig. 2. Service provisioning processes: our decentralized imagination.

and S3 for service nodes {n1, n2}, {n3}, and {n4}, respec-
tively. Taking account of the deadline metric is mainly
influenced by network conditions and computing power of the
service nodes, service accessibility to users decreases as the
distance from the center increases.

To let users know where the service node is, we design a
distributed metric table (we discuss it latterly in Section IV-B)
and assume it is stored on an AP (access point). In this
way, (1) service node n4 periodically sends its service status
to AP nodes, then (2) user ui in area S3 can quickly and
directly perceives the service status by checking the distributed
metric table, and (3) accesses the appropriate service node
or computing resources that cover her, i.e., node n4. This
paradigm does not need a coordinator to sense and search
the global resources located in remote areas S1 and S2 and
thus avoid the additional forwarding delays introduced by
centralized service discovering and scheduling.

Note that because the geo-distributed, space- and resource-
limited characteristics have broadly existed in edge computing,
scalability near the users is thus hard to promise [43]. There-
fore, resources in the area are usually countable and in a
relatively small number, which means the size of the dis-
tributed metric table is also small. This is clearly different from
the coordinator, which may be overwhelmed by numerous
metric updates in a centralized paradigm.

Furthermore, if users are in the blinded areas, i.e., out of
the coverage, or the requested service node reaches its maxi-
mum affordability, we assume two solutions or principles can
be adopted, including (1) service vendors extend computing
resources in the long term, and/or (2) accessing points near
the users redirects their requests to the cloud in the short term,
if in time before the deadline.

Here, we give the network topology description that we
assumed in this paper. It is known that there exists a computing
center or edge site in each city [44], [45]. These centers are
linked by backbone networks and are managed by a cloud
center. The network connections within each city are structured
in multiple layers, where the highest layer is the computing
center and the lowest layer can be the AP. Intermediate layers

could include various components, such as micro-DCs, base
stations, or forwarding devices with computing capability. See
Fig. 11 for an topology example.

To make the concept clear, we define service coverage
below (Def. 1).

Def. 1 (Service Coverage): Call a physical service circle a
service coverage if it is identified by a specific ability, such as
the reciprocal of latency or the service reliability. As the geo-
distance is far away from the centric service node (e.g., micro-
DC, base station), the quantities of the indicator decrease.

Thus, a natural question that arises is “how to shape
the service coverage dynamically and distributively?” In
Section IV, we design and implement two indicators to answer
this question.

IV. TWO DISTRIBUTED SENSING INDICATORS:
TIME AND RELIABILITY

We first give several design principles and preliminaries
when implementing SmartBuoy in Section IV-A. Section IV-B
introduces the distributed metric table structure. Then we use
two indicators, including time and reliability, to distributively
shape the service coverage step by step in Section IV-C and
Section IV-D, respectively. These two indicators are mainly
stored and updated in the metric table, aiming to select the
optimal service node in Fig. 2.

A. Design Principles and Preliminaries

We propose several principles and preliminaries to combat
the service discovering latency, enormous resources searching
space, and dynamically changed resources.

1) Distributed, incremental, and dynamic: Unlike many
current works that hold a global view of the network status
(i.e., users or coordinators are essentially sensible to all
service nodes), SmartBuoy tries to create a service coverage
distributively, incrementally, and dynamically. “Distributively”
means the coverage border of a TS service can be iden-
tified without direct communication to the service node or
a coordinator. “Incrementally” means performance indicators
stored in distributed metric table can be updated hop-by-hop
incrementally based on the current forwarding node status and
the received status packets, i.e., memoryless. “Dynamically”
means the coverage border is not fixed but changeable because
of the dynamic bandwidth and computation resources.

Meanwhile, in many cases, the concurrency capability of the
service may be constrained, and newly accessed users usually
have a terrible impact on the already served sessions because
of competition for resources. Given that the pre-allocated
resources are usually stable, we also assume the computing
delay is relatively fixed if the number of served sessions/users
does not reach the maximum number of concurrent accesses.
Otherwise, queueing theory should be introduced.

2) Proactively diffusion and/or piggybacking: In order to
fulfill the service time constraints, we need to spread the
service node status and update the metric table. In addition
to proactively diffusing the service status, e.g., according to
broadcasting, piggybacking can also be used [46] when there is
no security issues. As an enhancement for proactive diffusion,

Authorized licensed use limited to: Ocean University of China. Downloaded on July 15,2024 at 13:37:24 UTC from IEEE Xplore. Restrictions apply.

QI et al.: TOWARD DISTRIBUTIVELY BUILD TIME-SENSITIVE-SERVICE COVERAGE 587

piggybacking is a way that allows us to inject the status as
a field into the service packet flow. When the service results
flow toward the user, each node on the path can extract the
needed information.

In a natural production environment, broadcasting may be
unaffordable, which can utilize a publish/subscribe message
protocol. SmartBuoy assumes that network topology can be
various, which means geospatial borders or domains are not
essential.

3) QoS (Quality of Service) promises: Service coverage for
the same services may be overlapped. It may happen rather
often in the edge nodes that are densely deployed, such as UAV
formation. Overlapped information of the services’ coverage
can be directly recorded on the distributed metric table in the
way of one service with multiple accessible routes (or entries).
To simplify the forwarding processes, we pick up the best
record marked with an optimal value and forward the request
to the corresponding next hop.

Furthermore, the overlapped area is also an improvement for
QoS. Inevitably, users who want to request TS service may be
out of the service coverage (e.g., user uj as shown in Fig. 2).
It can be further classified into two types: (1) The remote cloud
can fulfill critical time requirements. In this scenario, given
that the remote cloud is actually a remote powerful service
edge node [47], the metric table near the users should also
have that record if the time constraints are not broken. Thus,
the service can be directly sent to the remote cloud. Another
scenario is (2) the users are totally out of service coverage.
We think the neglected users may need to proactively contact
the infrastructure or service vendor, like setting up a network
service by contacting the ISP.

Next, we describe the distributed metric table structure
indicating where the service node is (Section IV-B). Unlike the
centralized coordinator, the metric table in SmartBuoy holds
only a local view of the available services. Then, we design
and implement two indicators (Section IV-C and Section IV-D)
to distributively shape the service coverage for TS service in
edge computing.

B. Distributed Metric Table Structure

We assume each storing and accessing capable forwarding
node holds a metric table in the structure shown in TABLE II
so that users near the node can quickly find a proper ser-
vice node. Each entry in the table contains at least three
items: Service Name corresponding to the user requested, the
Next-Hop Node toward the node providing the TS service,
and service accessing Ability from the current node. This
structure can provide much flexibility. Ability can be
expressed in many ways, including the time consumed, the
promised reliability, or any other scalar quantities. Following
the principles, one can also integrate other indicators such as
energy cost, privacy, and budget.

Instead of combining the Name and Next-Hop Node
attributes to find the service node, a fixed routing pattern can
be achieved through direct adoption of the Pending Interest
Table (PIT) in Named-Data Networking [25] or by using
tracing applications [11]. By broadcasting an Interest to all
nexthops of the service node and using tracing-based solutions

TABLE II
DISTRIBUTED METRIC TABLE: PER-NODE PERSPECTIVE

Fig. 3. Service coverage generated by SmartBuoy-time.

to create the inverse path in the PIT [48], a time-indicated
service coverage can also be established. Additionally, in cases
where techniques such as SDN are used, the address of the
service node can also be used to simplify the process for the
Next-Hop Node.

When a forwarding node or an AP is near a user who wants
to access a VR service, the node first receives the request,
then checks the distributed metric table and finds the target
node(s) maintaining the VR service (e.g., ni and nj). Finally,
the node forwards the request to the selected most suitable
node (e.g., node ni, if the ability ai > aj). Formally, in this
paper, we define the service request as

Def. 2 (TS Service Request): The action of an end-user or
client requesting a time-sensitive service or resource. The
request requires bandwidth resources to transmit data of size
D and computing resources, which can be converted to time,
to complete the task. The service node must return the result
within a latency threshold of TTHR

s .
Note that we mainly solve the TS service coverage in this

paper. Although the number of kinds of services may be
significant, their quantities maintained in a node are usually
limited because of the resource-limited and geo-distributed
characters, leading to a small number of records in the table.
Meanwhile, the TS service coverage range is usually small
because of the critical time constraints, which makes the
forwarding path hops short.

C. SmartBuoy-Time: Shaping the Service Coverage by Time

This section answers the question of “how to shape
the service coverage identified by time dynamically and
distributively?”

To be clear, Fig. 3 depicts a service delay coverage demo.
In this demo, n24 is a service node, whereas other nodes are

Authorized licensed use limited to: Ocean University of China. Downloaded on July 15,2024 at 13:37:24 UTC from IEEE Xplore. Restrictions apply.

588 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

the forwarding nodes or the APs that provide a direct link
to users. Take a service with no more than 20 ms response
delay as an example. We can shape the first-level coverage
including {n15, n23, n25} with the service time no more than
10 ms. Recall that service delays include two parts: computing
and transmitting. Computing delay can be analyzed from a
log file or prediction models derived from queueing theory
and/or machine learning. Transmitting time can be adopted
from instantaneous measuring network conditions or based
on a network observer. Similarly, the second coverage can
be shaped by the nodes with service delays of no more than
20 ms. Moreover, higher than 20 ms is judged to be out-of-
service.

Denote by ability aj the estimated service delay that started
on the AP nj and ended when the result returns. Therefore,

aj =
1

T compt
s + T trans

j,s

(1)

where T compt
s is the computing time on node ns and T trans

j,s

the transmitting time of a data from nj to ns. Different
from TCP/IP where transmitting data likes a flow, in store-
and-forward network, e.g., named-data networking, delays of
transmitting are cumulated hop-by-hop and

T trans
j,s = T trans

j,j+1 + · · ·+ T trans
s−1,s

In many cases, such as identifying an image of a fixed
resolution in computer vision, the raw data of size Draw is
usually fixed or known. Thus, transmitting time T trans

j,s can be
easily evaluated inversely given a service, i.e., n24 proactively
diffuse the updating action indicating its status to its neighbors;
then, the neighbors calculate transmitting delays according to
the received packet of size Drecv with its transmitting duration
Trecv and update their metric table accordingly. To simplify,
we omit the result transmitting time because of its small packet
size. Thus, T trans

j,s on node nj can be estimated in real-time
by

T trans
j,s =

Draw

Drecv/Trecv
(2)

where Drecv/Trecv is actually the observed bandwidth under a
assumption that uplink and downlink bandwidth can be equal,
which is natural in a decentralized network. However, there
are also some useful tools to monitor the bandwidth when the
bandwidth equative condition is not followed, such as iPerf3,3

netperf,4 in-band network telemetry and gRPC [49]. We also
provide another method SmartBuoy-Reliability, instead of
real-time monitoring.

To avoid endless forwarding and updating during the proac-
tive diffusion processes, we derive a stop condition based
on (1) as aj < 1/TTHR

s .
Def. 3 (Time-based stop condition aj < 1/TTHR

s): If the
ability aj to provide a user the TS service s is smaller than
the given threshold 1/TTHR

s , or the diffusion path forms a
loop, or the node receives stale packets, the diffusion process
can be stopped. We call this judgment criterion a time-based
stop condition.

3iPerf3: https://iperf.fr.
4netperf: https://github.com/HewlettPackard/netperf.

Algorithm 1 SmartBuoy-Time. Shaping the Service Coverage
Distributively: A Single Node View (on Node nj)

Require: T compt
s , the service computing time on ns; TTHR

s ,
deadline threshold for service s.

1: observes and receives status packets to calculate T trans
j,s

2: calculates ability aj by (1)
3: if the time-based stop condition (Def. 3) is met then
4: stop forwarding the metric-table-updating action
5: end if
6: if the service s in metric table exists then
7: update aj

8: else
9: insert a new entry {s, ns, aj} into metric table

10: end if
11: forwards the updating action to its next neighbors

Based on (1) and Def. 3, we propose Algorithm 1 on the
perspective of a single node, e.g., nj . This node receives the
status packets from the service node s to update its metric
table. After this process is done, a service coverage that
contains all satisfied forwarding nodes or APs is generated.
Given that we have already described the details, we omit the
algorithm descriptions.

Complexity analysis for SmartBuoy-Time. In
Algorithm 1, for a service node ns, we first calculates
aj when receives a status packet, whose time complexity is
O(1). Then, we update the metric table if the same entry is
founded, whose time complexity is proportional to the table
size m and is O(m) at the worst case.

For communication overhead, like [21], we define it as the
percentage of utilized links. Under this definition, the length
of the longest path indicating the maximal coverage radius
can be denoted by ds,radius = TTHR

s /li, where li is the
lead time for link i. Suppose the distance between the service
node ns and the farthest node ne on the network edge is
ds,e, the communication overhead is min(ds,radius, ds,e)/ds,e.
Typically, ds,radius ≤ ds,e. We suppose the average degree for
each node nj is Ea = # links

nodes [50]. Given an entire network,
considering an active estimation of T trans

j,s , the total commu-
nication overhead could be min(Eds,radius

a , E
ds,e
a)/E

ds,e
a . See

Fig. 4 for an example of the relationship between ds,radius

and ds,e when ds,radius = 2, ds,e = 4, and Ea = 3. In this
example, the communication overhead is 10/15 ≃ 66.7%.
Therefore, when handling an extensive edge network, ds,radius

as a filter is efficient, i.e., using delay threshold to shape the
service coverage.

D. SmartBuoy-Reliability: Shaping the Service Coverage by
Reliability

SmartBuoy-Time promises a distributed service coverage
updating in real-time and a dynamic environment adapting.
On the one hand, even if we are guided by the principle
of “proactively diffusion and piggybacking”, the metric table
updating action may not be easy to judge. With a higher
updating frequency, costs may be high. On the other hand,

Authorized licensed use limited to: Ocean University of China. Downloaded on July 15,2024 at 13:37:24 UTC from IEEE Xplore. Restrictions apply.

QI et al.: TOWARD DISTRIBUTIVELY BUILD TIME-SENSITIVE-SERVICE COVERAGE 589

Fig. 4. Distance of ds,radius and ds,e.

Fig. 5. Service coverage generated by SmartBuoy-reliability.

a lower updating frequency may lead to the records stored in
the metric table being stale.

Therefore, inspired by service reliability, we design another
distributed indicator for aj , namely SmartBuoy-Reliability.
SmartBuoy-Reliability promises a reliable, lightweight way
to provide users with a TS service. Based on [51] and [52],
TS service reliability definition is thus given in Def. Def. 3.

Def. 4 (TS Service Reliability): The ability of a service s
to respond user’s request within a given deadline threshold
TTHR

s ,

aj := R(t) = Pr{t < TTHR
s } (3)

where t is the service delay.
How to shape the service coverage identified by TS

service reliability dynamically and distributively? Fig. 5
depicts an reliability coverage demo. Similar to Fig. 3, n24

is a service node, whereas other nodes are the forwarding
nodes or the APs that provide a direct link to users. Instead of
shaping the time coverage, after examining the networking
and computing condition, we can shape the first coverage
including {n15, n25} with a promise of the service reliability
R(t) ≥ 0.99. Similarly, the nodes with R(t) ≥ 0.8 can shape
the second reliability coverage. And R(t) < RTHR

s = 0.8 that
meets the reliability-based stop condition defined in Def.
Def. 5 is judged to be out-of-service.

Def. 5 (Reliability-based stop condition given aj < RTHR
s):

Suppose the ability to provide the user a TS service s is
smaller than a given reliability threshold RTHR

s , or the
diffusion path formed a loop, or the node receives stale
packets. In that case, the diffusion process can be stopped.
We call this judgment criteria a reliability-based stop
condition.

However, calculating R(t) has been proved to be a chal-
lenging problem because not only the transmitting resources

Fig. 6. Available resource curve.

vary with time but also the service node resources, which can
be regarded as a dynamic multi-state edge computing network
problem [53]. See Fig. 6, if the available resources drop below
the minimum requirements of a service, then the service loses
promised reliability. Popular ways to solve this problem are
like calculating the minimal service requirements, including
bandwidth and computing resources, to check whether they
can be fitted into the changeable resources. For example,
counting the feasible solutions’ ratio to the total. However,
current works mainly focus on a centralized way of computing
R(t) based on the globally collected networking data and
performing the RSDP (Recursive Sum of Disjoint Products)
algorithm [53], ignoring the service node states. Other meth-
ods, such as Monte-Carlo simulation [54], SVM [55], and
DNN [56], also suffer from a centralized and huge compu-
tation problem.

Therefore, SmartBuoy-Reliability is more complex than
SmartBuoy-Time when implementing it in a decentralized
manner. In the next, we crack it in 3 steps: (1) examining R(t),
(2) computing R(t) distributively, and finally, (c) proposing the
distributed SmartBuoy-Reliability algorithm.

1) Examining R(t): Service delay t, or R(t), is typically
affected by the changeable available resources, including com-
puting and bandwidth. To simplify the processes, we assume
the computing delay related to the service node is relatively
fixed if the number of served sessions/users does not reach the
maximum number of concurrent accesses. This assumption is
fare enough, especially in today’s VM/Docker/K8S-supported
applications where the resources consumed by a container can
be pre-allocated with a fixed demand. We use TTHR

s to denote
the rest time after it subtracts the fixed computing delays.

Therefore, our goal now turns to find the bandwidth bounds
BTHR satisfying t < TTHR

s in a shared network. R(t) can be
further denoted by

R(t) = Pr{B > BTHR} (4)

where B = {bs,2, b2,3, · · · , bj,k} is a sequence of links
representing the available bandwidth from the service node ns

to the forwarding or the AP node nk, and bj,k the available
bandwidth of two adjacent nodes nj and nk.

Like many networking reliability analyses, bj,k observed
on nk follows a discrete PDF (Probability Density Function)
given a time window of size T . TABLE III depicts an
example of the distribution. In practice, the distribution of
available bandwidth can be measured by many popular tools
and techniques, such as mentioned in Section IV-C. Note that
we do not focus on solving the alignment of bandwidth units,

Authorized licensed use limited to: Ocean University of China. Downloaded on July 15,2024 at 13:37:24 UTC from IEEE Xplore. Restrictions apply.

590 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

TABLE III
BANDWIDTH PDF

e.g., aligning Kbps, Mbps, and Gbps to Kbps. To make an
alignment, one can check the work [53], [57].

2) Distributively Computing R(t): We can compute the
minimal bandwidth requirements by

bmin =
Draw

TTHR
s

(5)

where Draw is the size of the raw data, which is known based
on our previous assumption. Therefore, by (5) bmin can be
calculated based on prior knowledge. Note that we use prior
knowledge here to illustrate the idea more clearly. However,
this prior knowledge can be removed when calculating the
reliability.

Moreover, in order to ensure a stable routing path from
the access node to the service node, SDN can be integrated.
In this paper, we utilize a relatively stable network topology
and employ a shortest path forwarding strategy to maintain
measurability.

Then, by (4), we further derive

R(t) = Pr{B ≥ bmin} (6)

Eq. (6) means for each bj,k ∈ B we have bj,k ≥ bmin.
Therefore, R(t) can be further denoted as

R(t) = Pr{
⋂

bj,k∈B

bj,k ≥ bmin} (7)

which means the available bandwidth from the nk to ns should
be greater than bmin.

We assume the capacities of different edges are statistically
independent, which is a typical assumption of reliability anal-
ysis on networking [53]. Then (7) can be further denoted by

R(t) = Πbj,k∈B Pr{bj,k ≥ bmin} (8)

However, through (8), the globally available network status
still needs to be known given bmin, i.e., each forwarding
or AP node will maintain a whole TABLE III, leading to
centralized gathering when calculating R(t). To avoid this
and to compute distributively, we define a CDF (Cumulative
Distribution Function) F (c, bx) as

F (c, bx) = F (c− 1, bx) Pr{bc−1,c ≥ bx} (9)

where c ∈ {s = 1, 2, · · · } represents a node that currently
receiving and processing the status packets, i.e., the current
node being accessed, bx the available bandwidth boundary (see
the header of TABLE IV). Therefore, we have the reliability
CDF

R(c, t) = F (c, bmin) Pr{s is available} (10)

where R(c, t) represents the reliability of finishing the service
s within time t < TTHR

s on node c. Pr{s is available} is

TABLE IV
BANDWIDTH CDF F (c, bx) (THREE NODES IN TOTAL)

the availability of service s given a time period T on node ns,
which can be computed by analyzing the historical data.

By (9), a global view of networking in TABLE III can be
further turned from a single node to a cumulative style as in
TABLE IV. This table contains three nodes’ CDF, and each
row (record) in the table is the data that needs to be stored and
updated on a specific node. Note that we assume the bandwidth
of the service node to itself is infinite; thus, all the values in
F (s, bx) are equal to 1. CDF F (c, bx) provides the ability to
change bmin at various data size. In other words, services with
arbitrary input data size can also be supported.

For example, given the data of size 3 Mb, a user request
wants to be responded within 1 second. According to (10),
by checking TABLE IV entry F (3, bx) on the forwarding
node n3, the produced reliability aj = R(3, 1s) = 0.01. If we
promise the user a predefined reliability of RTHR

s = 0.8, node
n3 as an access point around the user is really not acceptable.

3) Distributed SmartBuoy-Reliability Algorithm:
Algorithm 2 depicts the steps of distributively shaping the
service coverage guided by the reliability mentioned above
computing processes. Given the bandwidth PDF pbc−1,c

observed on node nc, CDF F (c − 1, bx) received from node
nc−1, minimal bandwidth bmin calculated by (5), and the
reliability threshold RTHR

s for service s. We first compute
F (c, bx) given F (c − 1, bx) and pbc−1,c

by (9) (line 4).
To avoid the forwarding process endlessly, we perform the
reliability-based stop condition defined in 5 (lines 1∼3, 5,
and 6∼8). If the stop condition is not satisfied, we continually
forward the updating action to its next neighbors (line 9).

Complexity analysis for SmartBuoy-Reliability. In
Algorithm 2, we first calculates ac when receives a status
packet containing the CDF information (i.e., the value of
F (c− 1, bx)) from the last hop nc−1, whose time complexity
is O(1). In details, calculating F (c, bx) according to (9) costs
O(1) by checking the bandwidth CDF (i.e., TABLE IV)
and PDF records of nc neighbors. After that, calculating ac

according to (10) costs O(1). However, maintaining CDF for
a service and observing bandwidth PDF for nc’s neighbors
might need O(l + lh), where l and h are the number of
bandwidth ranges (or columns) and neighbors, respectively.
Therefore, the time complexity of SmartBuoy-Reliability is
O(lh). Then, similar to Algorithm 1, the time complexity of
updating an entry in metric table is O(m) at the worst case.

For communication overhead, it is still
min(Eds,radius

a , E
ds,e
a)/E

ds,e
a .

V. AGE OF THE METRIC TABLE ANALYSIS

Distributively synchronizing the service status, i.e., proac-
tively updating the metric table, has a challenge that makes

Authorized licensed use limited to: Ocean University of China. Downloaded on July 15,2024 at 13:37:24 UTC from IEEE Xplore. Restrictions apply.

QI et al.: TOWARD DISTRIBUTIVELY BUILD TIME-SENSITIVE-SERVICE COVERAGE 591

Algorithm 2 SmartBuoy-Reliability. Shaping the Service Cov-
erage Distributively: A Single Node View (on Node nc)
Require: pbc−1,c , the PDF of the current node nc; F (c−1, bx),

the CDF for the last hop of nc; bmin, the minimal
bandwidth requirements given the TS service; RTHR

s ,
reliability threshold;

1: if action looped then
2: stop forwarding the metric-table-updating action
3: end if
4: calculates F (c, bx) by (9)
5: calculates ac according to (10)
6: if the reliability-based stop condition (Def. 5) is met then
7: stop forwarding the metric-table-updating action
8: end if
9: if the service s in metric table exists then

10: update ac

11: else
12: insert a new entry {s, ns, ac} into metric table
13: end if
14: forwards F (c, bx) to its next neighbors nc+1

the updating and synchronizing time interval T hard to decide.
On the one hand, a smaller T may cause communication a little
suffering and energy cost. On the other hand, a larger T may
cause the service capability to have a lagged effect, leading
the users to read the outdated status. How often should the
metric table be updated? And does there exist an upper
bound?

One feasible solution is to adopt a feedback mechanism,
e.g., ACK mechanism, to dynamically change T . However,
that complicates the implementation and might not be suitable
for an unstable environment. In this section, we provide a
one-way propagation analysis, i.e., without feedback sup-
port. Background of the analysis in this section can refer
to AoI [58]. Typically, AoI is an end-to-end performance
metric used to describe the latency when updating the system’s
monitored status. We consider a single service node with its
service coverage to derive T .

In SmartBuoy, as shown in Fig. 7, we divide the main
process into three phases: (1) a service node (source node)
triggers a metric-table-updating action and sends calculated
updates to a network for delivery to the forwarding or AP
nodes (AP for short), costing time T1. (2) After the metric
table has been updated, T2 will be elapsed until the users
access it. (3) Transmitting user’s request costs T3.

During phase (1), updates traverse a route consisting of for-
warding nodes, each of which is also a destination. To simplify
the model, we provide an end-to-end example. When users
access the service through the AP, we use a M/D/1/2/N/D
queueing system following Kendall’s notation. In this system,
user accesses follow a Poisson process with the parameter
λ, while service computing delays have a deterministic time
of D. A single service node in the service coverage serves two
entities at a time from the front of the queue, according to a
First-Come, First-Served (FCFS) discipline.

Fig. 7. Phases of the age of metric table.

1) Modeling the Service Provisioning to Be Atomic:
Denote by Tage := T1 + T2 + T3 the total time elapsed for
the service provisioning process before the requests reach the
server (see Fig. 7). From now on, our objective is to analyze
Tage to ensure the metric table is not outdated. Keeping the
metric table fresh means that during the period Tage, no other
users are accessing the service concurrently except the allowed
users; otherwise, Tage will be outdated. We can see that if
we allow unexpected requests during T1, the metric table for
the expected users will be outdated. Similarly, if we allow
unexpected requests during T3, the expected users may be
discarded due to the service being overloaded. In other words,
we could assume the process to be atomic.

In order to get a more general result, we allow at most N
users can access the service during T . N can also be regarded
as the maximal concurrent accesses of the service. Keep in
mind that this assumption regards phases 1, 2, and 3 as a
locker, which excludes the condition where the server may be
overloaded.

T1 and T3 are much more stable than T2 because the latter is
related to several random processes modeling users’ behaviors.
Next, we derive a more general model to estimate the length of
T2 by using several probabilistic and statistical models; then,
we combine T1, T2, and T3 to infer the synchronizing time
window T .

2) Aggregating User Accessing Models & Estimating T2:
Recall that users access the service following a Poisson
process and are independent of one another. Thereby, the
aggregated pattern of the user requesting process still is the
same, i.e.,

f(λ; k) = f(λ1 + λ2 + · · ·+ λU ; k) (11)

where λi is the mean of user ui’s requesting frequency per
time unit, k ∈ {0, 1, 2, . . . } the number of occurrences, and
U the total number of the users within the service coverage.

Following the Poisson process and the Erlang-k distribution,
we thereby get the arrival time y of the kth occurrence PDF,

fYk
(y) =

λkyk−1e−λy

(k − 1)!
, 1 ≤ k ≤ N (12)

And the PMF (Probability Mass Function),

FYk
(y) = Pr(Yk ≤ y) =

γ(k, λy)
Γ(k)

=
γ(k, λy)
(k − 1)!

(13)

where γ(·) is the lower incomplete gamma function. Since
we know that exactly k occurrences within a time interval
y still follows Poisson distribution with a parameter λy, i.e.,
Pr(k, y) = eλy (λy)k

k! . Therefore, let k = N + 1, by (13) we

Authorized licensed use limited to: Ocean University of China. Downloaded on July 15,2024 at 13:37:24 UTC from IEEE Xplore. Restrictions apply.

592 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

Fig. 8. Probabilities varying y.

Fig. 9. Curve of Q(p; 2, 200).

could derive the time distribution that no more than N (N is
included) users accessing the service, write F (y), is

F (y) = 1− FYN+1(y) (14)

Fig. 8 depicts the probabilities varying y given λ = 200 and
N = 2. To plot it, we assume λi = 10 times per minute each
user accesses and U = 20 users are in the service coverage.
Therefore, following (11), we have λ = 200. From now on,
T2 = Q(p; N, λ) denotes the time consumed by U users given
the specific probability p, where λ =

∑U
i=1 λi. For example,

if we let p = 0.91 and N = 2, we could say we are 91% sure
that we have a time interval of size TQ0.91 ≈ 312ms during
which no more than two out of U users accessed the service.

In addition, to easily compute y, the quantile function can
be further derived from (14), i.e.,

Q(p; N, λ) := F−1(y) =
1
λ

P−1(1− p, N + 1), p ∈ [0, 1]

(15)

where P−1 is the inverse of the Erlang function (13). Fig. 9
shows the results given N = 2, λ = 200.5 Obviously, the
preferred time interval y decreases as the p increases. We can
see that if we want a nearly 100% promise, the updating time
interval will be smaller than 1ms.

3) Inferring the Synchronizing Time Window T : To keep
the atomicity, let

Tage ≥ T (16)

which means during T at most N requests are allowed.
To clearly understand (16), inversely, if we let Tage ≤ T ,
more than N users may access the service during T , leading

5We thank the authors of distributions3 (an R package includ-
ing many useful distributions, https://cloud.r-project.org/web/packages/
distributions3), their nice work accelerates our analysis intuitively.

to the metric table outdated (records in the table are worthless)
and eventually the server overloaded.

In the mentioned-above analysis, we have derived T2 =
Q(p; N, λ), and hereafter we estimate T1 and T3.

For T1, the record for each service only contains three
items and is relatively small, so we can regard the time for
transmitting it roughly as the propagation time. Suppose L
hops in the path between the server and the user; therefore we
can denote

T1 = Thops × L (17)

where Thops is the minimal time consumed by transmitting a
packet from one node to its neighbor. In practice, and in our
experiments, Thops is usually equal to 2ms. In SmartBuoy,
L has a maximum Lmax, which is usually easy to get. Thus
T1 ≤ Thops × Lmax.

For T3, which is relative to the data size Draw. However, for
a time-sensitive service, because we have a specific deadline
TTHR

s , we could limit

T3 ≤ TTHR
s − T compt

s ≤ TTHR
s (18)

where T compt
s is fixed based on our assumptions in

Section IV-A, and T compt
s < TTHR

s . (18) remove the impact
of the dynamically changing bandwidth and gives a simple
yet clear upper bound, simplifying the analysis processes.
Meanwhile, the upper bound TTHR

s actually includes two
parts: the transmitting and the computing delays. We draw
another conclusion that TTHR

s is tight for the sum of phase
3 and the computing delay.

Therefore, substituting (15), (17), and (18) for (16), we have

T ≤ Tage ≤ Thops × Lmax + Q(p; N, λ) + TTHR
s (19)

which means the upper bound of the synchronizing time win-
dow T is Tage−bounds := sup{Thops × Lmax + Q(p; N, λ) +
TTHR

s }.
4) The Takeaway: In SmartBuoy, or similar scenarios such

as computing first networking, where U users (each user’s
accesses follow a Poisson process with a parameter λi) access
a service that supports at most N concurrences a time and
with TTHR

s time guaranteeing, we have p sure to say that the
updating time interval T of the metric table should be no more
than Tage−bounds, higher than it will lead to a lagged effect.

VI. EXPERIMENTS

Fig. 10 illustrates a panoramic view of our proposed Smart-
Buoy framework. We assume a service hub (e.g., the edge
cloud) exists, allowing the selected edge nodes (service nodes)
to pre-install the needed services. Based on the historical
performance data, scheduler on service hub can make a service
deployment strategy, such as with the objective of maxi-
mize the total services’ coverage. See also service placement
problem discussion in Section VII. Therefore, during the
simulation, we assume the service nodes are given in advance.

We also assume that each node that can provide user net-
work access (access point, AP) has a pre-installed lightweight
application. This application can perform our proposed
SmartBuoy framework and update indicators such as time and

Authorized licensed use limited to: Ocean University of China. Downloaded on July 15,2024 at 13:37:24 UTC from IEEE Xplore. Restrictions apply.

QI et al.: TOWARD DISTRIBUTIVELY BUILD TIME-SENSITIVE-SERVICE COVERAGE 593

Fig. 10. A panoramic view of the generated service coverage.

Fig. 11. Rocketfuel dataset.

reliability. In the logic layer, i.e., app-level, service coverage
can be built based on the user-specified indicators and the stop
condition. Then, the node updates the indicators and sends
them to the physical level. At the physical level, we can use
traditional communication protocols such as TCP/IP or UDP
to recursively and distributively transmit the indicator to the
node’s neighbors.

We implement and test SmartBuoy distributively on an
open-source simulator EasiEI [59]. EasiEI is a discrete-event
edge computing simulator based on ns-3, which supports
dynamic scenario simulation where the computing, bandwidth,
and storage resources can be changeable with time.

A. Dataset and Indicators

a) Simulation Dataset and Parameters: The trade secret
concern makes finding a suitable dynamic edge computing
network dataset, including network topology and edge node
computing status, complex. Therefore, we examine SmartBuoy
by real-world network topology, i.e., rocketfuel [60], com-
prising 282 nodes, including 177 clients (red), 89 gateways
(green), and 16 backbones (blue). The topology is illustrated
in Fig. 11. We assume all gateways are service candidate nodes
(SCNs) and randomly select ten service nodes (SN) from the
candidates.

To get closer to the ground truth and make the computing
and bandwidth dynamically change, we let the process of
each user accessing the service follow the Poisson distribution

TABLE V
SIMULATION PARAMETERS

f(λ; k) = λke−λ

k! with the mean of λ, e.g., ten times per
minute, where k ∈ {0, 1, 2 . . . } is the number of occurrences.
And the time interval x ≥ 0 between two consecutive access
for each user follows the Exponential distribution f(x; λ) =
λe−λx with the mean of 1/λ. According to the analysis of T
on Section V, we set T = 315ms. We simulate for 100 seconds
to get the results, which generate about 5,000 requests for each
method by default settings.

Notable simulation parameters relating to the simulation
dataset are shown in TABLE V.

b) Indicators: When a user accesses a service s, two
statuses may obtain eventually: 1) Success, the user acknowl-
edges that she can be successfully served before the deadline
and eventually be satisfied. 2) Failure, the user perceives
in advance at the first AP, or the coordinator, that she can
successfully access the service but fails eventually. To evaluate
SmartBuoy, we define

Success Rate =
#Success

#Total Requests
(20)

as the ratio of users or service requests can be fulfilled within
deadline threshold when they access the service.

c) Comparison Method: We compared SmartBuoy with
a (semi-)centralized scheduling method whose idea is adopted
from [35], i.e., fog colonies with communication. In this
method, we assume the centralized scheduling nodes (coor-
dinator candidate nodes, CoordC) are at least one hop away
compared with service node candidates. Similarly, we ran-
domly picked three nodes as the selected coordinators (Coord).
Following the steps of the conventional way in Section III-A,
users first access the coordinator and then are responded with
the service nodes’ locations. Second, users directly access the
service node guided by the returned locations.

In our experiments, each coordinator monitors 2∼3 nearest
(classified by several hops of the shortest path) service nodes.
We use a network tool NetworkX6 to extract these relations.
Since our models cover effective coverage, users out of the
coverage are blinded to the services and send no requests.
This is different from the centralized method that provides a
global discovering service.

B. Simulation Results

To clearly show the results, we use cs-Method to denote
the method, where cs is the number of concurrences and

6https://networkx.org

Authorized licensed use limited to: Ocean University of China. Downloaded on July 15,2024 at 13:37:24 UTC from IEEE Xplore. Restrictions apply.

594 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

Fig. 12. Success rate w.r.t deadline threshold T THR
s .

Fig. 13. Service delay w.r.t deadline threshold T THR
s .

the Method is one of the Centralized, SmartBuoy-Time,
or SmartBuoy-Reliability. For example, 1-Centralized means
the service node can simultaneously provide a maximum
of 1 request.

To verify the effectiveness of our methods, we compare the
success rate of the three methods varying the deadline thresh-
olds TTHR

s indicating different services. Fig. 12 shows the
results. Overall, SmartBuoy-Time and SmartBuoy-Reliability
under different concurrences have a significantly higher suc-
cess rate than the Centralized method. Meanwhile, methods
with a higher concurrency also have a success rate, indicating
that increasing the computing power has a good effect. When
we set the deadline threshold below 26 ms, the Centralized
method is even worse than our models. The main reason is
that the Centralized method introduces additional forward-
ing delays when handling users’ requests. In addition, the
success rate of SmartBuoy-Time decreases as the deadline
threshold increases. The main reason is that as the deadline
threshold increases, the service coverage also increases, lead-
ing to the number of served users in the service coverage
increase. Due to the dynamic edge environment, SmartBuoy-
Reliability shapes a soft and reliable service coverage, and
filters many unacceptable requests in advance, making the
success rate of SmartBuoy-Reliability significantly higher than
both SmartBuoy-Time and Centralized methods.

Fig. 14. Success rate w.r.t synchronizing window T .

We also examine the service delays of the successful
requests (see Fig. 13). We use Boxplot, where each box sum-
marizes the minimum, first quartile, median, third quartile, and
maximum values. The white circle in the box is the mean value
of the service delays. The service delays of SmartBuoy-Time
and SmartBuoy-Reliability are apparently lower and steadier
(no outliers or jitters) than the Centralized. The reason is that
in the Centralized method, the number of nodes in the requests
forwarding path is higher than in our methods, making the
bandwidth more changeable and the queening delays higher,
leading to the forwarding and scheduling latencies being
higher and not stable. Combined with Fig. 12, SmartBuoy-
Reliability has a higher success rate while maintaining the
delays at a low level (same with SmartBuoy-Time). Another
discovery is that after 26 ms, the success rate of the Centralized
for different concurrences becomes steady and similar (slightly
but not equal). This also occurred in Fig. 12. We think this is
because the coordinators (Coord) become the bottleneck due
to the hysteresis effect, limiting the scalability of the services.

Fig. 14 gives the success rate varying the window size T of
updating the metric table and the deadline threshold (TTHR

s).
To clearly show the success rate decreasing trend, we also plot
the linear regression. Numbers marked on the figure are the
drop difference. We can see that the success rate decreases
slightly as T increases, implying that the gains of frequently
updating the metric table, e.g., T = 1ms, are small. When
TTHR

s = 20 ms, the success rate of SmartBuoy-Time is around
0.92, which matches the analysis on Section V, which is 0.91,
see Fig. 8 (in our experiments, the number of the maximal
users in Fig. 11 given a service node is about 20, and thus
λ = 200). Another discovery is that the success rate after
TTHR

s = 25 ms becomes steady. The reason is that the service
coverage for a service node reaches the maximum and covers
the whole network.

Finally, to evaluate the communication overhead of Smart-
Buoy, we adopt the average coverage radius as a metric,
rather than relying on the percentage of utilized links. This

Authorized licensed use limited to: Ocean University of China. Downloaded on July 15,2024 at 13:37:24 UTC from IEEE Xplore. Restrictions apply.

QI et al.: TOWARD DISTRIBUTIVELY BUILD TIME-SENSITIVE-SERVICE COVERAGE 595

Fig. 15. Communication area w.r.t deadline threshold T THR
s .

approach offers a more meaningful measure of the network’s
performance, as it directly captures the spatial extent of the
network’s coverage. Specifically, we calculate the average
transmission delays of each request, as depicted in Fig. 15,
and use this information to derive the coverage radius.

Our results show that the average coverage radius increases
with the deadline threshold TTHR

s , reflecting the network’s
ability to cover a larger area and support a greater num-
ber of access points and users. Notably, we observe that
SmartBuoy-Reliability exhibits a larger coverage radius than
SmartBuoy-Time. This finding may initially seem counterin-
tuitive; however, it is due to the fact that SmartBuoy-Time
employs a hard delay to enforce a relatively rigid bound-
ary, whereas SmartBuoy-Reliability utilizes a probabilistic
approach to define a more flexible boundary. These results
suggest that SmartBuoy-Time can be viewed as a special case
of SmartBuoy-Reliability, corresponding to a 2-dimensional
cross-section of the latter’s 3-dimensional irregular spheres.

VII. DISCUSSION

Conventional methods assume users or applications know
the locations providing the services or facilitate a service
discovering service. This way regards the users as the centric
and may not be suitable for the time-sensitive services in a
dynamic environment. SmartBuoy, to some extent, proactively
regards the service as its centric and improves the forwarding
latencies and the global searching space. However, some
directions still need discussion.

1) Service Placement Problem (SPP): Placing the services
in a given geographical region significantly impacts latency
and other QoS metrics. Typically, two categories can solve
SPP, including centralized and decentralized methods. The
former usually gives optimal results according to QoS but
with poorer scalability, and the latter, supported by with
or without inter-nodes communication and collaboration, can
quickly fulfill QoS, however, with a relatively lower resources
efficiency [8].

In our proposed SmartBuoy, size of the service coverage
could be changeable due to the dynamic resources. Some
methods could be the choices, such as proactively re-deploying
the services based on the request prediction [61]. In this
paper, we do not focus on solving SPP and assume the
cloud or the service providers can solve it. Recently, we are
examining a relative stable solution that uses reliability as a
metric and the Linear Programing to get the optimal service

locations. It can be formulated as a maximum set covering
problem. Other decentralized methods to solve SPP may also
be adaptable such as [7] uses the accessing popularity in the
request forwarding path.

2) Dynamic Network Topology: In the context of dynamic
network topology, network nodes may be intermittent, as is the
case in opportunistic networks. Such intermittency can lead to
the disruption of communication sessions established between
users and service nodes, caused by changes in the session path,
addition or removal of forwarding nodes, among other factors.
If these disruptions occur while users are being serviced,
the user experience may be negatively affected. However,
techniques such as SDN can provide a stable and flexible
routing path, even with the addition or removal of network
nodes.

Moreover, in the event of a disruption during the metric
table updating process, a new route can be created after at
most a size T of an update window. This can be achieved
by using a network flooding mechanism to update the metric
table cached on access points, while ensuring global flooding
is avoided by adhering to stop conditions proposed in the
paper. Consequently, the information reflecting service states
and their location in the metric table will become outdated
in at most T time units. Therefore, selecting an appropriate
T is essential to keep the service requester informed of
the service information. To this end, the mobile patterns of
wireless nodes may need to be further explored to decide on
the update window size T . A smaller size that reflects the
reconnection time interval or the disconnection expectation for
wireless nodes should be considered. Presently, our framework
is designed for a wired network, where computational nodes
are stably connected. However, we plan to conduct further
research on intermittent patterns in the future.

3) Variable Processing Times: To simplify the processes,
we first assume that the computing time for a service is
relatively fixed if the number of sessions/users served does
not reach the maximum number max(cs) of concurrent
accesses or the service capacities. This assumption may be
reasonable, especially in today’s VM/Docker/K8S-supported
applications, where the resources consumed by a container can
be pre-allocated with a fixed demand. Under this assumption,
resources are not preempted.

For the variable times that are unrelated to computation,
which may cause the request not to be responded to within a
deadline threshold. In our SmartBuoy-Time method, accord-
ing to the service access capability aj on an AP node
nj (see Eq. 1), variable processing times might be further
added to the computing delay T compt

s using a predicting
model. However, it might seem a little complicated. In our
SmartBuoy-Reliability method, we focus on the availability
Pr{s is available} of service s given a time period T on
node ns, which can be computed by counting the ratio of
successfully served requests based on the historical data. The
meaning of Pr{s is available} implies that failed requests
due to virtualization and operating system scheduling are also
included. In addition, we need to note that our proposed
methods might not reach a global optimal but a relatively
reliable result.

Authorized licensed use limited to: Ocean University of China. Downloaded on July 15,2024 at 13:37:24 UTC from IEEE Xplore. Restrictions apply.

596 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

4) User Accessing Patterns: We need to note that our
analysis of user accessing pattern on Section V is based
on the Poisson process. In the scenarios where users obey
other stochastic models, finding the time interval T2 of two
consecutive requests may not be easy. However, the analysis
process mentioned in Section V is general.

VIII. CONCLUSION

In this paper, we have proposed a time-sensitive service
coverage concept and a distributed framework SmartBuoy with
several design principles. SmartBuoy aims to avoid forwarding
delays by introducing a distributed metric table and uses sev-
eral stop conditions to identify the coverage border. Intuitively,
it put the metric table representing the service status into
the network edge to let users quickly be responded. Most
importantly, to determine the metric table updating frequency,
we also provide an analysis methodology and a theoretical
upper bound. Results show that SmartBuoy is significantly
better than the conventional centralized method.

Future works include designing a self-adaptive T , integrat-
ing T with queueing theory, improving the service status
diffusing efficiency, exploring inter-service nodes collabora-
tion, examining mobility support, implementing a prototype
based on NDN, and solving the service placement problem.

REFERENCES

[1] F. Mass. (2019). The Growth in Connected IoT Devices is
Expected to Generate 79.4 Zb of Data in 2025, According to
a New IDC Forecast. [Online]. Available: https://www.idc.com/
getdoc.jsp?containerId=prUS45213219

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,
Oct. 2016, doi: 10.1109/jiot.2016.2579198.

[3] I. Kunze et al. (Mar. 2022). Use Cases for In-Network
Computing. Internet Engineering Task Force. [Online]. Available:
https://datatracker.ietf.org/doc/draft-irtf-coinrg-use-cases/02/

[4] M. Król, S. Mastorakis, D. Oran, and D. Kutscher, “Compute first
networking: Distributed computing meets ICN,” in Proc. 6th ACM Conf.
Information-Centric Netw., New York, NY, USA, Sep. 2019, pp. 67–77,
doi: 10.1145/3357150.3357395.

[5] X. Tang et al., “Computing power network: The architecture of
convergence of computing and networking towards 6G requirement,”
China Commun., vol. 18, no. 2, pp. 175–185, Feb. 2021, doi:
10.23919/JCC.2021.02.011.

[6] B. Nour, S. Mastorakis, and A. Mtibaa, “Compute-less networking:
Perspectives, challenges, and opportunities,” IEEE Netw., vol. 34, no. 6,
pp. 259–265, Nov. 2020, doi: 10.1109/mnet.011.2000180.

[7] Z. Fan, W. Yang, F. Wu, J. Cao, and W. Shi, “Serving at the
edge: An edge computing service architecture based on ICN,” ACM
Trans. Internet Technol., vol. 22, no. 1, pp. 1–27, Oct. 2021, doi:
10.1145/3464428.

[8] I. Murturi and S. Dustdar, “A decentralized approach for resource
discovery using metadata replication in edge networks,” IEEE Trans.
Services Comput., vol. 15, no. 5, pp. 2526–2537, Sep. 2022, doi:
10.1109/TSC.2021.3082305.

[9] I. Murturi and S. Dustdar, “DECENT: A decentralized configurator for
controlling elasticity in dynamic edge networks,” ACM Trans. Internet
Technol., vol. 22, no. 3, pp. 1–21, Aug. 2022, doi: 10.1145/3530692.

[10] M. Król and I. Psaras, “NFaaS: Named function as a service,” in Proc.
4th ACM Conf. Information-Centric Netw., Sep. 2017, pp. 134–144, doi:
10.1145/3125719.3125727.

[11] J. Qi and R. Wang, “R2: A distributed remote function execution
mechanism with built-in metadata,” IEEE/ACM Trans. Netw., vol. 31,
no. 2, pp. 710–723, Apr. 2023, doi: 10.1109/tnet.2022.3198467.

[12] A. Yousefpour, G. Ishigaki, and J. P. Jue, “Fog computing: Towards min-
imizing delay in the Internet of Things,” in Proc. IEEE Int. Conf. Edge
Comput. (EDGE), Jun. 2017, pp. 17–24, doi: 10.1109/ieee.edge.2017.12.

[13] A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, “On reducing IoT
service delay via fog offloading,” IEEE Internet Things J., vol. 5, no. 2,
pp. 998–1010, Apr. 2018, doi: 10.1109/jiot.2017.2788802.

[14] J. Santos, T. Wauters, B. Volckaert, and F. D. Turck, “Towards
network-aware resource provisioning in Kubernetes for fog comput-
ing applications,” in Proc. IEEE Conf. Netw. Softwarization (NetSoft),
Jun. 2019, pp. 351–359, doi: 10.1109/netsoft.2019.8806671.

[15] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Towards delay-
aware container-based service function chaining in fog computing,” in
Proc. IEEE/IFIP Netw. Operations Manag. Symp., Apr. 2020, pp. 1–9,
doi: 10.1109/noms47738.2020.9110376.

[16] A. C. Caminero and R. Muñoz-Mansilla, “Quality of service provision
in fog computing: Network-aware scheduling of containers,” Sensors,
vol. 21, no. 12, p. 3978, Jun. 2021, doi: 10.3390/s21123978.

[17] L. Toka, “Ultra-reliable and low-latency computing in the edge with
Kubernetes,” J. Grid Comput., vol. 19, no. 3, pp. 1–31, Jul. 2021, doi:
10.1007/s10723-021-09573-z.

[18] A. Marchese and O. Tomarchio, “Network-aware container placement
in cloud-edge Kubernetes clusters,” in Proc. 22nd IEEE Int. Symp.
Cluster, Cloud Internet Comput. (CCGrid), May 2022, pp. 859–865, doi:
10.1109/ccgrid54584.2022.00102.

[19] U. Ambalavanan, D. Grewe, N. Nayak, L. Liu, N. Mohan, and
J. Ott, “DICer: Distributed coordination for in-network computations,”
in Proc. 9th ACM Conf. Information-Centric Netw. New York, NY,
USA: Association for Computing Machinery, Sep. 2022, pp. 45–55, doi:
10.1145/3517212.3558084.

[20] Q. Peng, C. Wu, Y. Xia, Y. Ma, X. Wang, and N. Jiang, “DoSRA:
A decentralized approach to online edge task scheduling and resource
allocation,” IEEE Internet Things J., vol. 9, no. 6, pp. 4677–4692,
Mar. 2022, doi: 10.1109/jiot.2021.3107431.

[21] I. Dimolitsas, D. Dechouniotis, S. Papavassiliou, P. Papadimitriou, and
V. Theodorou, “Edge cloud selection: The essential step for network
service marketplaces,” IEEE Commun. Mag., vol. 59, no. 10, pp. 28–33,
Oct. 2021, doi: 10.1109/mcom.211.2001056.

[22] R. Guerzoni et al., “Analysis of end-to-end multi-domain manage-
ment and orchestration frameworks for software defined infrastructures:
An architectural survey,” Trans. Emerg. Telecommun. Technol., vol. 28,
no. 4, p. e3103, Sep. 2016, doi: 10.1002/ett.3103.

[23] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “ Multi-
probe LSH: efficient indexing for high-dimensional similarity search,”
in Proc. 33rd Int. Conf. Very Large Data Bases, 2007, pp. 950–961, doi:
10.5555/1325851.1325958.

[24] M. W. Al Azad and S. Mastorakis, “Reservoir: Named data for pervasive
computation reuse at the network edge,” in Proc. IEEE Int. Conf.
Pervasive Comput. Commun. (PerCom), Mar. 2022, pp. 141–151, doi:
10.1109/percom53586.2022.9762397.

[25] L. Zhang et al., “Named data networking,” ACM SIGCOMM Com-
put. Commun. Rev., vol. 44, no. 3, pp. 66–73, Jul. 2014, doi:
10.1145/2656877.2656887.

[26] C. Scherb, B. Faludi, and C. Tschudin, “Execution state management
in named function networking,” in Proc. IFIP Netw. Conf. (IFIP
Networking) Workshops, Jun. 2017, pp. 1–6, doi: 10.23919/ifipnetwork-
ing.2017.8264867.

[27] S. Mastorakis, A. Mtibaa, J. Lee, and S. Misra, “ICedge:
When edge computing meets information-centric networking,” IEEE
Internet Things J., vol. 7, no. 5, pp. 4203–4217, May 2020, doi:
10.1109/JIOT.2020.2966924.

[28] M. Krol, K. Habak, D. Oran, D. Kutscher, and I. Psaras, “RICE: Remote
method invocation in ICN,” in Proc. 5th ACM Conf. Information-
Centric Netw., New York, NY, USA, Sep. 2018, pp. 1–11, doi:
10.1145/3267955.3267956.

[29] M. Amadeo, C. Campolo, and A. Molinaro, “NDNe: Enhancing
named data networking to support cloudification at the edge,” IEEE
Commun. Lett., vol. 20, no. 11, pp. 2264–2267, Nov. 2016, doi:
10.1109/lcomm.2016.2597850.

[30] P. Simoens et al., “Service-centric networking for distributed hetero-
geneous clouds,” IEEE Commun. Mag., vol. 55, no. 7, pp. 208–215,
Jul. 2017, doi: 10.1109/mcom.2017.1600412.

[31] D. Griffin et al., “Service-centric networking,” in Handbook of Research
on Redesigning the Future of Internet Architectures. Hershey, PA, USA:
IGI Global, 2015, pp. 68–95, doi: 10.4018/978-1-4666-8371-6.ch004.

[32] Z. Wang, D. Zhang, and H. Xia, “On the design of software-defined
service-centric networking for mobile cloud computing,” in Proc.
IEEE 25th Int. Conf. Parallel Distrib. Syst. (ICPADS), Dec. 2019,
pp. 1000–1005, doi: 10.1109/icpads47876.2019.00153.

Authorized licensed use limited to: Ocean University of China. Downloaded on July 15,2024 at 13:37:24 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/jiot.2016.2579198
http://dx.doi.org/10.1145/3357150.3357395
http://dx.doi.org/10.23919/JCC.2021.02.011
http://dx.doi.org/10.1109/mnet.011.2000180
http://dx.doi.org/10.1145/3464428
http://dx.doi.org/10.1109/TSC.2021.3082305
http://dx.doi.org/10.1145/3530692
http://dx.doi.org/10.1145/3125719.3125727
http://dx.doi.org/10.1109/tnet.2022.3198467
http://dx.doi.org/10.1109/ieee.edge.2017.12
http://dx.doi.org/10.1109/jiot.2017.2788802
http://dx.doi.org/10.1109/netsoft.2019.8806671
http://dx.doi.org/10.1109/noms47738.2020.9110376
http://dx.doi.org/10.3390/s21123978
http://dx.doi.org/10.1007/s10723-021-09573-z
http://dx.doi.org/10.1109/ccgrid54584.2022.00102
http://dx.doi.org/10.1145/3517212.3558084
http://dx.doi.org/10.1109/jiot.2021.3107431
http://dx.doi.org/10.1109/mcom.211.2001056
http://dx.doi.org/10.1002/ett.3103
http://dx.doi.org/10.5555/1325851.1325958
http://dx.doi.org/10.1109/percom53586.2022.9762397
http://dx.doi.org/10.1145/2656877.2656887
http://dx.doi.org/10.23919/ifipnetworking.2017.8264867
http://dx.doi.org/10.23919/ifipnetworking.2017.8264867
http://dx.doi.org/10.1109/JIOT.2020.2966924
http://dx.doi.org/10.1145/3267955.3267956
http://dx.doi.org/10.1109/lcomm.2016.2597850
http://dx.doi.org/10.1109/mcom.2017.1600412
http://dx.doi.org/10.4018/978-1-4666-8371-6.ch004
http://dx.doi.org/10.1109/icpads47876.2019.00153

QI et al.: TOWARD DISTRIBUTIVELY BUILD TIME-SENSITIVE-SERVICE COVERAGE 597

[33] M. Gasparyan, T. Braun, and E. Schiller, “IaDRA-SCN: Intra-domain
routing architecture for service-centric networking,” in Proc. IEEE Int.
Conf. Commun. Workshops (ICC Workshops), May 2018, pp. 1–6, doi:
10.1109/iccw.2018.8403718.

[34] B. Liu, J. Mao, L. Xu, R. Hu, and X. Chen, “CFN-dyncast: Load
balancing the edges via the network,” in Proc. IEEE Wireless Com-
mun. Netw. Conf. Workshops (WCNCW), Mar. 2021, pp. 1–6, doi:
10.1109/wcncw49093.2021.9420028.

[35] Z. Á. Mann, “Decentralized application placement in fog computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 12, pp. 3262–3273,
Dec. 2022, doi: 10.1109/tpds.2022.3148985.

[36] J. Ott, E. Hyytiä, P. Lassila, J. Kangasharju, and S. Santra, “Floating
content for probabilistic information sharing,” Pervas. Mobile Comput.,
vol. 7, no. 6, pp. 671–689, Dec. 2011, doi: 10.1016/j.pmcj.2011.09.001.

[37] R. Yamamoto, A. Kashima, T. Yamazaki, and Y. Tanaka, “Adaptive
contents dissemination method for floating contents,” in Proc. IEEE 90th
Veh. Technol. Conf. (VTC-Fall), Sep. 2019, pp. 1–5, doi: 10.1109/vtc-
fall.2019.8891485.

[38] R.-I. Ciobanu, C. Negru, F. Pop, C. Dobre, C. X. Mavromoustakis, and
G. Mastorakis, “Drop computing: Ad-hoc dynamic collaborative com-
puting,” Future Gener. Comput. Syst., vol. 92, pp. 889–899, Mar. 2019,
doi: 10.1016/j.future.2017.11.044.

[39] J. P. Champati, H. Al-Zubaidy, and J. Gross, “Transient analysis for
multihop wireless networks under static routing,” IEEE/ACM Trans.
Netw., vol. 28, no. 2, pp. 722–735, Apr. 2020, doi: 10.1109/tnet.2020.
2975616.

[40] M. E. Porter and J. E. Heppelmann, “How does augmented reality
work?” Harvard Bus. Rev., vol. 95, no. 6, p. 58, 2017. [Online].
Available: https://hbr.org/2017/11/how-does-augmented-reality-work

[41] M. Xu et al., “From cloud to edge: A first look at public edge platforms,”
in Proc. 21st ACM Internet Meas. Conf., Nov. 2021, pp. 37–53, doi:
10.1145/3487552.3487815.

[42] C. Moreno, Z. Allam, D. Chabaud, C. Gall, and F. Pratlong, “Introducing
the ‘15-minute city’: Sustainability, resilience and place identity in future
post-pandemic cities,” Smart Cities, vol. 4, no. 1, pp. 93–111, Jan. 2021,
doi: 10.3390/smartcities4010006.

[43] B. Cohen et al. Cloud Edge Computing: Beyond the Data Center.
Accessed: May 16, 2022. [Online]. Available: https://www.openstack.
org/use-cases/edge-computing/cloud-edge-computing-beyond-the-data-
center/

[44] L. Corneo et al., “(How much) can edge computing change network
latency?” in Proc. IFIP Netw. Conf. (IFIP Networking), Jun. 2021,
pp. 1–9.

[45] H. Jin, L. Jia, and Z. Zhou, “Boosting edge intelligence with collab-
orative cross-edge analytics,” IEEE Internet Things J., vol. 8, no. 4,
pp. 2444–2458, Feb. 2021.

[46] M. Amadeo, G. Ruggeri, C. Campolo, and A. Molinaro, “IoT services
allocation at the edge via named data networking: From optimal bounds
to practical design,” IEEE Trans. Netw. Service Manag., vol. 16, no. 2,
pp. 661–674, Jun. 2019, doi: 10.1109/tnsm.2019.2900274.

[47] S. Dustdar, V. C. Pujol, and P. K. Donta, “On distributed computing
continuum systems,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 4,
pp. 4092–4105, Apr. 2023, doi: 10.1109/tkde.2022.3142856.

[48] Y. Zhang, A. Afanasyev, J. Burke, and L. Zhang, “A survey of mobility
support in named data networking,” in Proc. IEEE Conf. Comput.
Commun. Workshops (INFOCOM WKSHPS), Apr. 2016, pp. 83–88, doi:
10.1109/INFCOMW.2016.7562050.

[49] L. Tan et al., “In-band network telemetry: A survey,” Comput.
Netw., vol. 186, Feb. 2021, Art. no. 107763. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128620313396

[50] D. Bonchev and G. A. Buck, Quantitative Measures of Network
Complexity. Boston, MA, USA: Springer, 2005, pp. 191–235, doi:
10.1007/0-387-25871-X_5.

[51] M. Rausand, A. Barros, and A. Hoyland, System Reliability Theory:
Models, Statistical Methods, and Applications. Hoboken, NJ, USA:
Wiley, 2020, ch. 4, pp. 117–118. [Online]. Available: https://www.wiley.
com/en-cn/SystemReliabilityTheory:Models,StatisticalMethods,and
Applications,3rdEdition-p-9781119373957

[52] A. Hazra, M. Adhikari, T. Amgoth, and S. N. Srirama, “A comprehensive
survey on interoperability for IIoT: Taxonomy, standards, and future
directions,” ACM Comput. Surv., vol. 55, no. 1, pp. 1–35, Nov. 2021,
doi: 10.1145/3485130.

[53] C.-F. Huang, D.-H. Huang, and Y.-K. Lin, “Network reliability eval-
uation for multi-state computing networks considering demand as
the non-integer type,” Rel. Eng. Syst. Saf., vol. 219, Mar. 2022,
Art. no. 108226, doi: 10.1016/j.ress.2021.108226.

[54] J. E. Ramirez-Marquez and D. W. Coit, “A monte-carlo simula-
tion approach for approximating multi-state two-terminal reliability,”
Rel. Eng. Syst. Saf., vol. 87, no. 2, pp. 253–264, Feb. 2005, doi:
10.1016/j.ress.2004.05.002.

[55] M. L. Gámiz, F. J. Navas-Gómez, and R. Raya-Miranda, “A machine
learning algorithm for reliability analysis,” IEEE Trans. Rel., vol. 70,
no. 2, pp. 535–546, Jun. 2021, doi: 10.1109/TR.2020.3011653.

[56] C.-H. Huang, D.-H. Huang, and Y.-K. Lin, “A novel approach to predict
network reliability for multistate networks by a deep neural network,”
Qual. Technol. Quant. Manag., vol. 19, no. 3, pp. 362–378, Oct. 2021,
doi: 10.1080/16843703.2021.1992072.

[57] L. Chen, J. Qi, X. Su, and R. Wang, “REMR: A reliability evaluation
method for dynamic edge computing network under time constraint,”
IEEE Internet Things J., vol. 10, no. 5, pp. 4281–4291, Mar. 2023, doi:
10.1109/JIOT.2022.3216056.

[58] R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and
S. Ulukus, “Age of information: An introduction and survey,” IEEE J.
Sel. Areas Commun., vol. 39, no. 5, pp. 1183–1210, May 2021, doi:
10.1109/jsac.2021.3065072.

[59] X. Su. (2022). EasiEI: A Simulator to Modeling Synthetical Edge Com-
puting Environments. [Online]. Available: https://gitlab.com/Mirrola/ns-
3-dev/-/wikis/EasiEI-Simulator

[60] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring ISP
topologies with rocketfuel,” IEEE/ACM Trans. Netw., vol. 12, no. 1,
pp. 2–16, Feb. 2004, doi: 10.1109/tnet.2003.822655.

[61] L. Liu, H. Tan, S. H.-C. Jiang, Z. Han, X.-Y. Li, and H. Huang,
“Dependent task placement and scheduling with function configuration
in edge computing,” in Proc. Int. Symp. Quality Service, Jun. 2019,
pp. 1–10, doi: 10.1145/3326285.3329055.

Jianpeng Qi received the Ph.D. degree in com-
puter science and technology from the University
of Science and Technology Beijing, Beijing, China,
in 2023.

He is currently a Post-Doctoral Researcher with
the College of Computer Science and Technology,
Ocean University of China, China. His research
interests include edge computing, compute first net-
working, and distributed systems.

Xiao Su received the B.S. degree in information
and computational science from Beijing Information
Science and Technology University and the M.S.
degree in computer technology from the University
of Science and Technology Beijing, Beijing, China,
under his advisor Prof. Rui Wang. His research
interests include edge computing, simulation, and
machine learning.

Rui Wang received the Ph.D. degree in pattern
recognition and intelligent systems from Northwest-
ern Polytechnical University, Xi’an, China, in 2007.

He is currently a Professor with the Department of
Computer Science and Technology, School of Com-
puter and Communication Engineering, University
of Science and Technology Beijing, Beijing, China.
His research interests include edge intelligence,
mobile and ubiquitous computing, and distributed
systems.

Authorized licensed use limited to: Ocean University of China. Downloaded on July 15,2024 at 13:37:24 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/iccw.2018.8403718
http://dx.doi.org/10.1109/wcncw49093.2021.9420028
http://dx.doi.org/10.1109/tpds.2022.3148985
http://dx.doi.org/10.1016/j.pmcj.2011.09.001
http://dx.doi.org/10.1109/vtcfall.2019.8891485
http://dx.doi.org/10.1109/vtcfall.2019.8891485
http://dx.doi.org/10.1016/j.future.2017.11.044
http://dx.doi.org/10.1109/tnet.2020.2975616
http://dx.doi.org/10.1109/tnet.2020.2975616
http://dx.doi.org/10.1145/3487552.3487815
http://dx.doi.org/10.3390/smartcities4010006
http://dx.doi.org/10.1109/tnsm.2019.2900274
http://dx.doi.org/10.1109/tkde.2022.3142856
http://dx.doi.org/10.1109/INFCOMW.2016.7562050
http://dx.doi.org/10.1007/0-387-25871-X_5
http://dx.doi.org/10.1145/3485130
http://dx.doi.org/10.1016/j.ress.2021.108226
http://dx.doi.org/10.1016/j.ress.2004.05.002
http://dx.doi.org/10.1109/TR.2020.3011653
http://dx.doi.org/10.1080/16843703.2021.1992072
http://dx.doi.org/10.1109/JIOT.2022.3216056
http://dx.doi.org/10.1109/jsac.2021.3065072
http://dx.doi.org/10.1109/tnet.2003.822655
http://dx.doi.org/10.1145/3326285.3329055

